示例#1
0
def connected_components(g):
    vertices = g.vertices
    components = vertices
    s = dsf.DSF(vertices)
    for edge in g.el:
        components -= s.union(edge.source,edge.dest)
    return components
示例#2
0
def kruskal(G,trace=False):
    weight_heap = min_heap.MinHeap()
    S = dsf.DSF(len(G.al))
    for v in range(len(G.al)):
        for edge in G.al[v]:
            if v<edge.dest:
                weight_heap.insert(min_heap.HeapRecord(edge.weight,[v,edge.dest,edge.weight]))
    mst = graph.Graph(len(G.al),weighted=True)
    count = 0
    while count<len(G.al)-1 and len(weight_heap.heap)>0:
        next_edge = weight_heap.extractMin().data
        if S.union(next_edge[0],next_edge[1])==1:
            mst.insert_edge(next_edge[0],next_edge[1],next_edge[2])
            count+=1
            if trace:
                draw_over(G,mst,'Kruskal '+str(count))
                print(next_edge,'added to mst')
        else:
            if trace:
                print(next_edge,'rejected')
        
    if count == len(G.al)-1:
        return mst
    print('Graph has no minimum spanning tree')
    return None
示例#3
0
def connected_components(g):
    vertices = len(g.al)
    components = vertices
    s = dsf.DSF(vertices)
    for v in range(vertices):
        for edge in g.al[v]:
            components -= s.union(v, edge.dest)
    return components
def connected_components(G, trace=False):
    # Returns the disjoint set forest representing the connected components of G
    S = dsf.DSF(len(G.al))
    for v in range(len(G.al)):
        for edge in G.al[v]:
            if v < edge.dest:
                S.union(v, edge.dest)
                if trace:
                    print('last edge: ({},{})'.format(v, edge.dest))
                    print('dsf:', S.parent)
    return S
示例#5
0
def connected_components(g):
    vertices = len(g.al)
    components = vertices
    s = dsf.DSF(vertices)
    for v in range(vertices):
        for edge in g.al[v]:
            components -= s.union(v, edge.dest)
            s.draw()
    if components > 1:
        return True
    return False
示例#6
0
    for i in s.set_list():
        if v in i and len(i) == 1:
            return True
    return False


def is_compressed(s):
    for i in s.parent:
        if i != -1 and s.parent[i] != -1:
            return False
    return True


if __name__ == "__main__":
    plt.close("all")
    s = dsf.DSF(8)
    s.union(0, 1)
    print(s.parent)
    print(is_compressed(s))  # True
    s.draw()

    s.union(7, 2)
    print(s.parent)
    print(is_compressed(s))  # True
    s.draw()

    s.union(3, 5)
    print(s.parent)
    print(is_compressed(s))  # True
    s.draw()
示例#7
0
 g.insert_edge(0,1)
 g.insert_edge(0,2)
 g.insert_edge(1,2)
 g.insert_edge(1,3)
 g.insert_edge(2,3)
 g.insert_edge(3,4)
 g.insert_edge(4,1)
 g.display()
 g.draw('Question 6')
 p = bfs(g)
 for i in range(5):
     print('vertex',i,'distance from source',dist_from_prev(p,i))
     
 
 print('\n *********** Question 7 **************')   
 s = dsf.DSF(6)
 s.union(0,1)
 s.union(4,2)
 s.union(3,1)
 print(s.parent)
 s.draw('Question 7')
 
 for i in range(6):
     print('element',i,' elements in same set:',in_same_set(s,i))
     
 print('\n *********** Question 8 **************')   
 s = [2,5,7,11,14,-6,-10]
 for i in range(-10,10):
     print('goal:',i,'subset:',subsetsum(s,i,sum(s)))