示例#1
0
    def test_coord_cost(self):
        d_mat = np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                          [1, 0, 1, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
                          [0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0],
                          [0, 0, 0, 1, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1, 1]])
        d_list = ["a", "b", "c", "d", "e", "f", "g", "h"]
        d = DSMMatrix(d_mat, activity_labels=d_list)

        c_mat = np.diag(np.ones([8]))
        c = ClusterMatrix.from_mat(c_mat)
        pow_cc = 1

        cg = ClusterGenerator(dsm_mat=d)

        initial_cost = ClusterGenerator._coord_cost(d, c, cg.params)
        assert (initial_cost == 64)

        d_mat = np.array([[1, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                          [1, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 1, 0],
                          [0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0],
                          [0, 0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1, 1]])
        d_list = ["a", "b", "c", "d", "e", "f", "g", "h"]
        d = DSMMatrix(d_mat, activity_labels=d_list)

        c_mat = np.diag(np.ones([8]))
        c = ClusterMatrix.from_mat(c_mat)
        pow_cc = 1

        # cg = ClusterGenerator(dsm_mat = d)

        initial_cost = ClusterGenerator._coord_cost(d, c, cg.params)
        assert (initial_cost == 80)
示例#2
0
async def new_dsm(dsm_item: DSMItem):
    d_mat = np.array(dsm_item.mat)
    labels = dsm_item.labels
    system_elements = dsm_item.system_elements

    try:
        d = DSMMatrix(d_mat, activity_labels=labels)
        d.clear_elements(system_elements)
        app_state.dsm = d
    except AssertionError as err:
        return {"result": "AssertionError: " + str(err)}
    except:
        return {"result": "Unexpected error: " + str(sys.exc_info()[0])}

    return dsm_item
示例#3
0
    def test_bid(self):
        d_mat = np.array([[1, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                          [1, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0],
                          [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0],
                          [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
        d_list = ["a", "b", "c", "d", "e", "f", "g", "h"]
        d = DSMMatrix(d_mat, activity_labels=d_list)
        c_mat = np.diag(np.ones([8]))
        c = ClusterMatrix.from_mat(c_mat)

        cg = ClusterGenerator(dsm_mat=d)
        cg.params = ClusterParameters(pow_cc=1,
                                      pow_bid=1,
                                      pow_dep=4,
                                      max_cluster_size=16,
                                      rand_accept=32,
                                      rand_bid=32,
                                      times=2,
                                      stable_limit=2,
                                      max_repeat=10)

        elmt = 7
        cluster_bid = cg._make_bid(elmt, d, c)
        # print(cluster_bid)
        assert np.equal(cluster_bid, np.zeros([8, 1])).all()

        d_mat2 = np.array([[1, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                           [1, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0],
                           [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0],
                           [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
        d2 = DSMMatrix(d_mat2, activity_labels=d_list)
        cg2 = ClusterGenerator(dsm_mat=d2)
        cg2.params = ClusterParameters(pow_cc=1,
                                       pow_bid=1,
                                       pow_dep=4,
                                       max_cluster_size=16,
                                       rand_accept=32,
                                       rand_bid=32,
                                       times=2,
                                       stable_limit=2,
                                       max_repeat=10)

        elmt = 0
        cluster_bid_2 = cg2._make_bid(elmt, d, c)
        # print("CB2: ", cluster_bid_2)
        assert np.equal(cluster_bid_2,
                        np.array([[0], [0], [16], [1], [0], [0], [0],
                                  [0]])).all()
示例#4
0
    def test_coord_cost_2(self):
        d_mat = np.array([[1, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                          [1, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0],
                          [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0],
                          [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
        d_list = ["a", "b", "c", "d", "e", "f", "g", "h"]
        d = DSMMatrix(d_mat, activity_labels=d_list)

        c_mat = np.array([[1., 0., 1., 0., 0., 0., 0., 0.],
                          [0., 1., 0., 0., 0., 0., 0., 0.],
                          [0., 0., 0., 1., 0., 0., 0., 0.],
                          [0., 0., 0., 0., 1., 0., 0., 0.],
                          [0., 0., 0., 0., 0., 1., 0., 0.],
                          [0., 0., 0., 0., 0., 0., 1., 0.],
                          [0., 0., 0., 0., 0., 0., 0., 1.],
                          [0., 0., 0., 0., 0., 0., 0., 0.]])
        c = ClusterMatrix.from_mat(c_mat)
        pow_cc = 1

        cg = ClusterGenerator(dsm_mat=d)

        # import pdb; pdb.set_trace()
        initial_cost = ClusterGenerator._coord_cost(d, c, cg.params)
        print(initial_cost)
        assert (initial_cost == 20)
示例#5
0
    def test_cluster(self):
        d_mat = np.array([[1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0],
                          [1, 0, 1, 0, 0, 1, 0, 0], [0, 1, 0, 1, 0, 0, 0, 0],
                          [0, 0, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0],
                          [0, 0, 0, 1, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1, 1]])
        d_list = ["a", "b", "c", "d", "e", "f", "g", "h"]
        d = DSMMatrix(d_mat, activity_labels=d_list)
        # print(d.mat.shape)

        cg = ClusterGenerator(dsm_mat=d)
示例#6
0
async def do_cluster():
    app_state.generator = ClusterGenerator(dsm_mat=app_state.dsm)
    c_orig = app_state.generator.cluster(app_state.dsm)
    total_coord_cost = app_state.generator.total_coord_cost
    cost_history = app_state.generator.cost_history
    c = ClusterMatrix.reorder(c_orig)

    new_dsm = DSMMatrix.reorder_by_cluster(app_state.dsm, c)

    d_new_g = DSMMatrix.place_diag(new_dsm)
    app_state.cluster_result = c
    app_state.dsm_result = d_new_g
    app_state.dsm_annotated = DSMMatrix.annotate_clusters(d_new_g, c)

    return {
        "dsm": app_state.dsm_result.tojson(),
        "labels": app_state.dsm_result.labels,
        "cluster": app_state.cluster_result.tojson(),
        "dsm_a": app_state.dsm_annotated.tojson(),
    }
示例#7
0
    def test_place_diag(self):
        d_mat = np.array([[0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0],
                          [0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 1],
                          [0, 0, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 1, 0],
                          [1, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0]])
        d_list = ["a", "b", "c", "d", "e", "f", "g", "h"]
        d = DSMMatrix(d_mat, activity_labels=d_list)

        d_diag = DSMMatrix.place_diag(d)

        d_mat_result = np.array([[1, 0, 1, 0, 0, 1, 0, 1],
                                 [1, 1, 0, 0, 0, 0, 0, 0],
                                 [0, 0, 1, 1, 0, 0, 0, 1],
                                 [0, 0, 1, 1, 0, 0, 0, 1],
                                 [0, 0, 0, 0, 1, 1, 0, 0],
                                 [0, 1, 0, 0, 0, 1, 1, 0],
                                 [1, 0, 0, 1, 0, 0, 1, 0],
                                 [0, 0, 1, 0, 0, 0, 0, 1]])
        d_result = DSMMatrix(d_mat_result, activity_labels=d_list)

        assert np.equal(d_diag.mat, d_result.mat).all()
示例#8
0
    def test_reorder2(self):
        d_mat_2 = np.array([[1, 0, 0, 1], [0, 0, 0, 0], [1, 0, 1, 0],
                            [0, 0, 1, 1]])
        d_list_2 = ["1", "2", "3", "4"]
        d_2 = DSMMatrix(d_mat_2, d_list_2)
        # print("Original DSM: ")
        # print(d_2.mat)

        c_mat_2 = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0],
                            [1, 0, 0, 0]])
        c_2 = ClusterMatrix.from_mat(c_mat_2)
        # print("Original Cluster: ")
        # print(c_2.mat)

        new_d_mat_2 = DSMMatrix.reorder_by_cluster(d_2, c_2)
        # print("Reordered DSM: ")
        # print(new_d_mat_2.mat)
        # print(new_d_mat_2.labels)
        val_comp_2 = new_d_mat_2.mat == np.array([[0, 1, 0, 0], [0, 0, 0, 1],
                                                  [0, 0, 0, 0], [1, 0, 0, 0]])
        lab_comp_2 = new_d_mat_2.labels == ['4', '3', '2', '1']
        assert val_comp_2.all()
        assert lab_comp_2
示例#9
0
    def test_reorder1(self):
        # d_mat = np.identity(3)
        d_mat = np.array([[1, 0, 0, 0], [0, 0, 0, 0], [1, 0, 1, 0],
                          [0, 0, 1, 1]])
        d_list = ["1", "2", "3", "4"]
        d = DSMMatrix(d_mat, d_list)
        # print("Original DSM: ")
        # print(d.mat)

        c_mat = np.array([[1, 0, 1, 1], [0, 1, 0, 0], [0, 0, 0, 0],
                          [0, 0, 0, 0]])
        c = ClusterMatrix.from_mat(c_mat)
        # print("Original Cluster: ")
        # print(c.mat)

        new_d_mat = DSMMatrix.reorder_by_cluster(d, c)
        # print("Reordered DSM: ")
        # print(new_d_mat.mat)
        # print(new_d_mat.labels)
        val_comp_1 = new_d_mat.mat == np.array([[0, 0, 0, 0], [1, 0, 0, 0],
                                                [0, 1, 0, 0], [0, 0, 0, 0]])
        lab_comp_1 = new_d_mat.labels == ['1', '3', '4', '2']
        assert val_comp_1.all()
        assert lab_comp_1
示例#10
0
 def test_clear_systemelems(self):
     d_mat = np.array([[1, 0, 1, 0], [1, 1, 1, 0], [1, 1, 1, 0],
                       [0, 0, 1, 1]])
     d = DSMMatrix(d_mat)
     d.clear_elements([0])
     assert (d.mat == np.array([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0],
                                [0, 0, 1, 1]])).all()
     d.clear_elements([1, 3])
     # print(d.mat)
     assert (d.mat == np.array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0],
                                [0, 0, 0, 0]])).all()
     d.clear_elements([])
     assert (d.mat == np.array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0],
                                [0, 0, 0, 0]])).all()
     self.assertRaises(AssertionError, d.clear_elements, ["e"])
     self.assertRaises(AssertionError, d.clear_elements, ["2", 1])
     self.assertRaises(AssertionError, d.clear_elements, [6])
示例#11
0
    def __init__(self):
        self.params = ClusterParameters(pow_cc=1,
                                        pow_bid=1,
                                        pow_dep=4,
                                        max_cluster_size=8,
                                        rand_accept=16,
                                        rand_bid=16,
                                        times=2,
                                        stable_limit=2,
                                        max_repeat=10)

        self.dsm = DSMMatrix.from_size(4)

        self.dsm_result = None
        self.cluster_result = None
        self.dsm_annotated = None

        self.generator = None
示例#12
0
 def test_setunset(self):
     d_mat = np.array([[1, 0, 0, 0], [0, 0, 0, 0], [1, 0, 1, 0],
                       [0, 0, 1, 1]])
     d_list = ["a", "b", "c", "d"]
     d = DSMMatrix(d_mat, activity_labels=d_list)
     d_mat[1, 0] = 1
     d.set(1, 0)
     assert (d.mat == np.array([[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 1, 0],
                                [0, 0, 1, 1]])).all()
     d_mat[2, 1] = 1
     d.set(2, 1)
     assert (d.mat == np.array([[1, 0, 0, 0], [1, 0, 0, 0], [1, 1, 1, 0],
                                [0, 0, 1, 1]])).all()
     d_mat[3, 2] = 0
     d.unset(3, 2)
     assert (d.mat == np.array([[1, 0, 0, 0], [1, 0, 0, 0], [1, 1, 1, 0],
                                [0, 0, 0, 1]])).all()
     # d_mat[3,2] = 0
     self.assertRaises(ArithmeticError, d.unset, 4, 6)
     self.assertRaises(ArithmeticError, d.unset, -1, 0)
示例#13
0
    def test_cluster(self):
        d_mat = np.array([[1, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0],
                          [1, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0],
                          [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0],
                          [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]])
        d_list = ["a", "b", "c", "d", "e", "f", "g", "h"]
        d = DSMMatrix(d_mat, activity_labels=d_list)

        cg = ClusterGenerator(default_size=8)

        # try:
        cluster_matrix = cg.cluster(d)
        total_coord_cost = cg.total_coord_cost
        cost_history = cg.cost_history
        # except:
        #     extype, value, tb = sys.exc_info()
        #     traceback.print_exc()
        #     pdb.post_mortem(tb)
        # pdb.runcall(DSMMatrix.reorder_by_cluster, DSM_matrix, cluster_matrix)

        c_mat_result = np.array([[1, 0, 1, 0, 0, 0, 0, 0],
                                 [0, 1, 0, 0, 0, 0, 0, 0],
                                 [0, 0, 0, 1, 0, 1, 0, 0],
                                 [0, 0, 0, 0, 1, 0, 0, 0],
                                 [0, 0, 0, 0, 0, 0, 1, 0],
                                 [0, 0, 0, 0, 0, 0, 0, 1],
                                 [0, 0, 0, 0, 0, 0, 0, 0],
                                 [0, 0, 0, 0, 0, 0, 0, 0]])
        c_result = ClusterMatrix.from_mat(c_mat_result)
        c_size_result = np.array([[2], [1], [2], [1], [1], [1], [0], [0]])
        print(cluster_matrix.mat)

        # import pdb; pdb.set_trace()
        # assert np.equal(cluster_matrix.mat, c_result.mat).all()
        initial_cost = ClusterGenerator._coord_cost(d, cluster_matrix,
                                                    cg.params)
        print("Cost: " + str(initial_cost))
        assert (initial_cost == 14 or initial_cost == 16)
示例#14
0
    def __init__(self, dsm_mat=None, default_size=2):
        if isinstance(dsm_mat, DSMMatrix):
            self._dsm_mat = dsm_mat
        else:
            self._dsm_mat = DSMMatrix.from_size(default_size)

        # Set clustering control parameters
        max_size = self._dsm_mat.mat.shape[0]
        self._params = set_default_cluster_parameters(max_size)

        # Initialise matrices and arrays
        self._DSM_size = self._dsm_mat.mat.shape[1]
        self._n_clusters = max_size

        self._cost_history = np.zeros([10000, 1])
        self._history_index = 0
        self._cluster_matrix_history = []
        self._cluster_size_history = []
        self._total_coord_cost_history = []
        self._cost_history = np.array([])
        self._total_coord_cost = 0
        self._cluster_result = ClusterMatrix.from_mat(
            np.zeros([max_size, max_size]))
示例#15
0
def graph_matrix(gen_matrix, cluster_matrix=None,
    x_title='Element', y_title='Element', graph_title='DSM Matrix',
    x_tcklabel=None, y_tcklabel=None, print_flag=0):
    """ Graph the DSM and cluster matrix.

    """
    assert isinstance(gen_matrix, DSMMatrix) or isinstance(gen_matrix, ClusterMatrix)
    # if not isinstance(cluster_matrix, ClusterMatrix)

    ds_mat = gen_matrix.mat

    (row_in, col_out) = np.where(ds_mat)
    m_value = ds_mat[ds_mat != 0]

    max_row = np.max(row_in)
    max_col = np.max(col_out)

    axis = np.array([0, max_col, max_row]);

    max_value = np.max(m_value)
    data_scale = np.ceil(500/max_value)/20

    if x_tcklabel is None and isinstance(gen_matrix, DSMMatrix):
        x_tcklabel = gen_matrix.labels
    elif isinstance(x_tcklabel, list):
        if len(x_tcklabel) != ds_mat.shape[0]:
            x_tcklabel = [str(x+1) for x in range(ds_mat.shape[0])]
    else:
        x_tcklabel = [str(x+1) for x in range(ds_mat.shape[0])]

    if y_tcklabel is None and isinstance(gen_matrix, DSMMatrix):
        y_tcklabel = gen_matrix.labels
    elif isinstance(y_tcklabel, list):
        if len(y_tcklabel) != ds_mat.shape[0]:
            y_tcklabel = [str(x+1) for x in range(ds_mat.shape[0])]
    else:
        y_tcklabel = [str(x+1) for x in range(ds_mat.shape[0])]

    if isinstance(cluster_matrix, ClusterMatrix):
        new_gen_matrix = DSMMatrix.annotate_clusters(gen_matrix, cluster_matrix)
        orig_ds_mat = gen_matrix.mat
        ds_mat = new_gen_matrix.mat

    fig, ax = plt.subplots()
    im = ax.imshow(ds_mat, cmap=plt.cm.Blues)

    ax.set_xticks(np.arange(len(x_tcklabel)))
    ax.set_yticks(np.arange(len(y_tcklabel)))

    ax.set_xticklabels(x_tcklabel)
    ax.set_yticklabels(y_tcklabel)
    ax.set_xlabel(x_title)
    ax.set_ylabel(y_title)
    ax.xaxis.set_label_position('top')

    ax.tick_params(top=True, bottom=False,
                   labeltop=True, labelbottom=False)

    # plt.setp(ax.get_xticklabels(), rotation=90, ha="right",
    #      rotation_mode="anchor")

    ax.set_title(graph_title)
    fig.tight_layout()
    plt.draw()
示例#16
0
def block_exit():
    plt.show()

if __name__ == "__main__":
    d_mat = np.array([
        [1, 0, 1, 0, 0, 1, 0, 1],
        [1, 1, 0, 0, 0, 0, 0, 0],
        [0, 0, 1, 1, 0, 0, 0, 1],
        [0, 0, 1, 1, 0, 0, 0, 1],
        [0, 0, 0, 0, 1, 1, 0, 0],
        [0, 1, 0, 0, 0, 1, 1, 0],
        [1, 0, 0, 1, 0, 0, 1, 0],
        [0, 0, 1, 0, 0, 0, 0, 1]
    ])
    d = DSMMatrix(d_mat)

    c_mat = np.array([
        [0, 0, 0, 1, 0, 1, 0, 0],
        [1, 0, 1, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 1],
        [0, 0, 0, 0, 0, 0, 1, 0],
        [0, 0, 0, 0, 1, 0, 0, 0],
        [0, 1, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0]
    ])
    c = ClusterMatrix.from_mat(c_mat)

    graph_matrix(d, cluster_matrix=c)
    graph_matrix(c)
示例#17
0
    def _coord_cost(DSM_matrix, cluster_matrix, params):
        """
        Calculate the coordination cost of the cluster matrix.
        This routine checks all DSM interactions and adds to a total the cost of all intra-cluster interactions. Interactions outside of clusters are assigned a higher cost.
        As per Thebeau (2000) the cost formula is, for each interdependent/coupled activity i and j:
        (In cluster) (DSM[i] + DSM[j])*cluster_size[cluster_n]^pow_cc
        (Out of cluster) (DSM[i] + DSM[j])*DSM_size^pow_cc
        Sum each term to obtain the total.
        """
        assert isinstance(DSM_matrix, DSMMatrix)
        assert isinstance(cluster_matrix, ClusterMatrix)
        assert isinstance(params, ClusterParameters)

        if params:
            pow_cc = params.pow_cc
        else:
            pow_cc = 1

        # get the number of clusters and size of the DSM
        n_clusters = cluster_matrix.mat.shape[0]
        DSM_size = cluster_matrix.mat.shape[1]

        # initialise coordination costs
        total_coord_cost = 0
        coordination_cost = np.zeros([1, DSM_size])

        # dummy variable for reorder function
        DSM_labels = [str(x + 1) for x in range(DSM_size)]

        # reorder the DSM according to the cluster matrix
        new_DSM_matrix = DSMMatrix.reorder_by_cluster(DSM_matrix,
                                                      cluster_matrix)
        new_DSM_size = new_DSM_matrix.mat.shape[0]

        num_cluster_elements = np.sum(cluster_matrix.mat, axis=1, dtype=np.int)
        n = 0  # indexing starts from zero
        new_cluster_mat = ClusterMatrix.from_mat(
            np.zeros([new_DSM_size, new_DSM_size]))

        # Create a new cluster matrix that matches the reordered DSM matrix
        #

        # formerly n_clusters - changed due to shape
        # Check again to replicate MATLAB functionality - this is not a permanent fix
        for i in range(n_clusters):
            if i < new_DSM_size:
                new_cluster_mat.mat[i,
                                    n:n + num_cluster_elements[i]] = np.ones(
                                        [1, num_cluster_elements[i]])
                n += num_cluster_elements[i]
            else:
                new_cluster_mat.mat = np.vstack([
                    new_cluster_mat.mat,
                    np.zeros(new_cluster_mat.mat.shape[1])
                ])
                new_cluster_mat.mat[i,
                                    n:n + num_cluster_elements[i]] = np.ones(
                                        [1, num_cluster_elements[i]])
                n += num_cluster_elements[i]

        # import pdb; pdb.set_trace()
        # get new cluster size array matching matrix
        # new_cluster_size = np.sum(new_cluster_mat.mat, axis=1)
        new_cluster_mat.update_cluster_size()

        # replace old data with new data for cost calculation
        DSM_matrix = new_DSM_matrix
        DSM_size = new_DSM_size
        cluster_matrix = new_cluster_mat
        # cluster_size = new_cluster_size

        # get the number of clusters and size of the DSM
        n_clusters = cluster_matrix.mat.shape[0]
        DSM_size = cluster_matrix.mat.shape[1]
        total_coord_cost = 0
        coordination_cost = np.zeros([DSM_size, 1])

        # Calculate the cost of the solution
        for i in range(DSM_size):
            for j in range(i + 1, DSM_size):
                if DSM_matrix.mat[i, j] > 0 or DSM_matrix.mat[j, i] > 0:
                    cost_total = 0

                    for cluster_index in range(n_clusters):
                        if cluster_matrix.mat[cluster_index,
                                              i] + cluster_matrix.mat[
                                                  cluster_index, j] == 2:
                            # cost_total += (DSM_matrix.mat[i,j] + DSM_matrix.mat[j,i]) * cluster_size[cluster_index]**pow_cc
                            cost_total += (DSM_matrix.mat[i, j] +
                                           DSM_matrix.mat[j, i]
                                           ) * cluster_matrix.cluster_size[
                                               cluster_index]**pow_cc

                    if cost_total > 0:
                        cost_c = cost_total
                    else:
                        cost_c = (DSM_matrix.mat[i, j] +
                                  DSM_matrix.mat[j, i]) * DSM_size**pow_cc
                    coordination_cost[i] += cost_c

        total_coord_cost = np.sum(coordination_cost)
        return total_coord_cost
示例#18
0
 def test_manual_labels(self):
     d_mat = np.array([[1, 0, 0, 0], [0, 0, 0, 0], [1, 0, 1, 0],
                       [0, 0, 1, 1]])
     d_list = ["a", "b", "c", "d"]
     d = DSMMatrix(d_mat, activity_labels=d_list)
示例#19
0
 def test_auto_labels(self):
     d2_mat = np.array([[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 1, 0],
                        [0, 0, 1, 1]])
     d2 = DSMMatrix(d2_mat)
     # print(d2.labels)
     assert d2.labels == ['1', '2', '3', '4']
示例#20
0
 def test_from_size(self):
     d = DSMMatrix.from_size(3)