示例#1
0
    def run(
            self,
            datamanager: XYDataManager,
            metric: Scorer,
            all_scoring_functions: bool,
            splitter,
            initial_configs
    ):
        # time.sleep(random.random())
        if not initial_configs:
            self.logger.warning("Haven't initial_configs. Return.")
            return
        if hasattr(splitter, "random_state"):
            setattr(splitter, "random_state", self.random_state)
        self.evaluator.init_data(
            datamanager,
            metric,
            all_scoring_functions,
            splitter,
        )

        self.scenario = Scenario(
            {
                "run_obj": "quality",
                "runcount-limit": 1000,
                "cs": self.shps,  # configuration space
                "deterministic": "true",
                # todo : 如果是local,存在experiment,如果是其他文件系统,不输出smac
                # "output_dir": self.resource_manager.smac_output_dir,
            },
            initial_runs=0,
            db_type=self.resource_manager.db_type,
            db_params=self.resource_manager.get_runhistory_db_params(),
            anneal_func=self.search_method_params.get("anneal_func")
        )
        # todo 将 file_system 传入,或者给file_system添加 runtime 参数
        smac = SMAC4HPO(
            scenario=self.scenario,
            rng=np.random.RandomState(self.random_state),
            tae_runner=self.evaluator,
            initial_configurations=initial_configs
        )
        smac.solver.initial_configurations = initial_configs
        smac.solver.start_()
        run_limit = self.get_run_limit()
        for i in range(run_limit):
            smac.solver.run_()
            should_continue = self.evaluator.resource_manager.delete_models()
            if not should_continue:
                self.logger.info(f"PID = {os.getpid()} is exiting.")
                break
示例#2
0
    def run(
            self,
            initial_configs,
            evaluator_params=frozendict(),
            instance_id="",
            rh_db_type="sqlite",
            rh_db_params=frozendict(),
            rh_db_table_name="runhistory"
    ):
        # time.sleep(random.random())
        if not initial_configs:
            self.logger.warning("Haven't initial_configs. Return.")
            return

        self.evaluator.init_data(**evaluator_params)
        senario_dict = {
            "run_obj": "quality",
            "runcount-limit": 1000,
            "cs": self.shps,  # configuration space
            "deterministic": "true",
            "instances": [[instance_id]],
            "cutoff_time": self.per_run_time_limit,
            "memory_limit": self.per_run_memory_limit
            # todo : 如果是local,存在experiment,如果是其他文件系统,不输出smac
            # "output_dir": self.resource_manager.smac_output_dir,
        }
        self.scenario = Scenario(
            senario_dict,
            initial_runs=0,
            db_type=rh_db_type,
            db_params=rh_db_params,
            db_table_name=rh_db_table_name,
            anneal_func=self.search_method_params.get("anneal_func"),
            use_pynisher=self.limit_resource
        )
        # todo 将 file_system 传入,或者给file_system添加 runtime 参数
        smac = SMAC4HPO(
            scenario=self.scenario,
            rng=np.random.RandomState(self.random_state),
            tae_runner=self.evaluator,
            initial_configurations=initial_configs
        )
        smac.solver.initial_configurations = initial_configs
        smac.solver.start_()
        run_limit = self.get_run_limit()
        for i in range(run_limit):
            smac.solver.run_()
            should_continue = self.evaluator.resource_manager.delete_models()
            if not should_continue:
                self.logger.info(f"PID = {os.getpid()} is exiting.")
                break
示例#3
0
    def run(self, datamanager: XYDataManager, metric: Scorer,
            all_scoring_functions: bool, splitter, initial_configs):
        if hasattr(splitter, "random_state"):
            setattr(splitter, "random_state", self.random_state)
        self.set_task(datamanager.task)
        self.evaluator.init_data(
            datamanager,
            metric,
            all_scoring_functions,
            splitter,
        )
        # todo: metalearn

        self.scenario = Scenario(
            {
                "run_obj": "quality",
                "runcount-limit": self.runcount_limit,
                "cs": self.phps,  # configuration space
                "deterministic": "true",
                "output_dir": self.resource_manager.smac_output_dir,
            },
            initial_runs=self.initial_runs,
            db_type=self.resource_manager.db_type,
            db_args=self.resource_manager.rh_db_args,
            db_kwargs=self.resource_manager.rh_db_kwargs,
        )
        # todo 将 file_system 传入,或者给file_system添加 runtime 参数
        smac = SMAC4HPO(scenario=self.scenario,
                        rng=np.random.RandomState(self.random_state),
                        tae_runner=self.evaluator,
                        initial_configurations=initial_configs)
        smac.solver.start_()
        for i in range(self.runcount_limit):
            smac.solver.run_()
            should_continue = self.evaluator.resource_manager.delete_models()
            if not should_continue:
                print("info:exit")
                break
示例#4
0
def fmin_smac(func: typing.Callable,
              x0: typing.List[float],
              bounds: typing.List[typing.Iterable[float]],
              maxfun: int = -1,
              rng: typing.Union[np.random.RandomState, int] = None,
              scenario_args: typing.Mapping[str, typing.Any] = None,
              **kwargs):
    """
    Minimize a function func using the SMAC4HPO facade
    (i.e., a modified version of SMAC).
    This function is a convenience wrapper for the SMAC4HPO class.

    Parameters
    ----------
    func : typing.Callable
        Function to minimize.
    x0 : typing.List[float]
        Initial guess/default configuration.
    bounds : typing.List[typing.List[float]]
        ``(min, max)`` pairs for each element in ``x``, defining the bound on
        that parameters.
    maxfun : int, optional
        Maximum number of function evaluations.
    rng : np.random.RandomState, optional
            Random number generator used by SMAC.
    scenario_args: typing.Mapping[str,typing.Any]
        Arguments passed to the scenario
        See dsmac.scenario.scenario.Scenario
    **kwargs:
        Arguments passed to the optimizer class
        See ~dsmac.facade.smac_facade.SMAC

    Returns
    -------
    x : list
        Estimated position of the minimum.
    f : float
        Value of `func` at the minimum.
    s : :class:`smac.facade.smac_hpo_facade.SMAC4HPO`
        SMAC objects which enables the user to get
        e.g., the trajectory and runhistory.

    """
    # create configuration space
    cs = ConfigurationSpace()

    # Adjust zero padding
    tmplt = 'x{0:0' + str(len(str(len(bounds)))) + 'd}'

    for idx, (lower_bound, upper_bound) in enumerate(bounds):
        parameter = UniformFloatHyperparameter(name=tmplt.format(idx + 1),
                                               lower=lower_bound,
                                               upper=upper_bound,
                                               default_value=x0[idx])
        cs.add_hyperparameter(parameter)

    # create scenario
    scenario_dict = {
        "run_obj": "quality",
        "cs": cs,
        "deterministic": "true",
        "initial_incumbent": "DEFAULT",
    }

    if scenario_args is not None:
        scenario_dict.update(scenario_args)

    if maxfun > 0:
        scenario_dict["runcount_limit"] = maxfun
    scenario = Scenario(scenario_dict)

    smac = SMAC4HPO(
        scenario=scenario,
        tae_runner=ExecuteTAFuncArray,
        tae_runner_kwargs={'ta': func},
        rng=rng,
        **kwargs
    )

    smac.logger = logging.getLogger(smac.__module__ + "." + smac.__class__.__name__)
    incumbent = smac.optimize()
    config_id = smac.solver.runhistory.config_ids[incumbent]
    run_key = RunKey(config_id, None, 0)
    incumbent_performance = smac.solver.runhistory.data[run_key]
    incumbent = np.array([incumbent[tmplt.format(idx + 1)]
                          for idx in range(len(bounds))], dtype=np.float)
    return incumbent, incumbent_performance.cost, smac
示例#5
0
    def main_cli(self, commandline_arguments: typing.List[str]=None):
        """Main function of SMAC for CLI interface"""
        self.logger.info("SMAC call: %s" % (" ".join(sys.argv)))

        cmd_reader = CMDReader()
        kwargs = {}
        if commandline_arguments:
            kwargs['commandline_arguments'] = commandline_arguments
        main_args_, smac_args_, scen_args_ = cmd_reader.read_cmd(**kwargs)

        root_logger = logging.getLogger()
        root_logger.setLevel(main_args_.verbose_level)
        logger_handler = logging.StreamHandler(
                stream=sys.stdout)
        if root_logger.level >= logging.INFO:
            formatter = logging.Formatter(
                "%(levelname)s:\t%(message)s")
        else:
            formatter = logging.Formatter(
                "%(asctime)s:%(levelname)s:%(name)s:%(message)s",
                "%Y-%m-%d %H:%M:%S")
        logger_handler.setFormatter(formatter)
        root_logger.addHandler(logger_handler)
        # remove default handler
        if len(root_logger.handlers) > 1:
            root_logger.removeHandler(root_logger.handlers[0])

        # Create defaults
        rh = None
        initial_configs = None
        stats = None
        incumbent = None

        # Create scenario-object
        scenario = {}
        scenario.update(vars(smac_args_))
        scenario.update(vars(scen_args_))
        scen = Scenario(scenario=scenario)

        # Restore state
        if main_args_.restore_state:
            root_logger.debug("Restoring state from %s...", main_args_.restore_state)
            rh, stats, traj_list_aclib, traj_list_old = self.restore_state(scen, main_args_)

            scen.output_dir_for_this_run = create_output_directory(
                scen, main_args_.seed, root_logger,
            )
            scen.write()
            incumbent = self.restore_state_after_output_dir(scen, stats,
                                                            traj_list_aclib, traj_list_old)

        if main_args_.warmstart_runhistory:
            aggregate_func = average_cost
            rh = RunHistory(aggregate_func=aggregate_func)

            scen, rh = merge_foreign_data_from_file(
                scenario=scen,
                runhistory=rh,
                in_scenario_fn_list=main_args_.warmstart_scenario,
                in_runhistory_fn_list=main_args_.warmstart_runhistory,
                cs=scen.cs,
                aggregate_func=aggregate_func)

        if main_args_.warmstart_incumbent:
            initial_configs = [scen.cs.get_default_configuration()]
            for traj_fn in main_args_.warmstart_incumbent:
                trajectory = TrajLogger.read_traj_aclib_format(
                    fn=traj_fn, cs=scen.cs)
                initial_configs.append(trajectory[-1]["incumbent"])

        if main_args_.mode == "SMAC4AC":
            optimizer = SMAC4AC(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                runhistory=rh,
                initial_configurations=initial_configs,
                stats=stats,
                restore_incumbent=incumbent,
                run_id=main_args_.seed)
        elif main_args_.mode == "SMAC4HPO":
            optimizer = SMAC4HPO(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                runhistory=rh,
                initial_configurations=initial_configs,
                stats=stats,
                restore_incumbent=incumbent,
                run_id=main_args_.seed)
        elif main_args_.mode == "SMAC4BO":
            optimizer = SMAC4BO(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                runhistory=rh,
                initial_configurations=initial_configs,
                stats=stats,
                restore_incumbent=incumbent,
                run_id=main_args_.seed)
        elif main_args_.mode == "ROAR":
            optimizer = ROAR(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                runhistory=rh,
                initial_configurations=initial_configs,
                run_id=main_args_.seed)
        elif main_args_.mode == "EPILS":
            optimizer = EPILS(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                runhistory=rh,
                initial_configurations=initial_configs,
                run_id=main_args_.seed)
        elif main_args_.mode == "Hydra":
            optimizer = Hydra(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                runhistory=rh,
                initial_configurations=initial_configs,
                stats=stats,
                restore_incumbent=incumbent,
                run_id=main_args_.seed,
                random_configuration_chooser=main_args_.random_configuration_chooser,
                n_iterations=main_args_.hydra_iterations,
                val_set=main_args_.hydra_validation,
                incs_per_round=main_args_.hydra_incumbents_per_round,
                n_optimizers=main_args_.hydra_n_optimizers)
        elif main_args_.mode == "PSMAC":
            optimizer = PSMAC(
                scenario=scen,
                rng=np.random.RandomState(main_args_.seed),
                run_id=main_args_.seed,
                shared_model=smac_args_.shared_model,
                validate=main_args_.psmac_validate,
                n_optimizers=main_args_.hydra_n_optimizers,
                n_incs=main_args_.hydra_incumbents_per_round,
            )
        try:
            optimizer.optimize()
        except (TAEAbortException, FirstRunCrashedException) as err:
            self.logger.error(err)