def circular_conv(request): if request.method == 'POST': form = Output(request.POST) if form.is_valid(): cd = form.cleaned_data input1 = cd['input1'] input2 = cd['input2'] x=arr_conv(input1) h=arr_conv(input2) xd="x(n) = " + str(x) hd="h(n) = " + str(h) x = np.asarray(x) h = np.asarray(h) xlen=len(x) hlen=len(h) r=xlen-hlen if xlen>hlen: h=np.resize(h, xlen) lmax=xlen if hlen>xlen: x=np.resize(x, hlen) lmax=hlen if hlen==xlen: lmax=xlen pad_zero(r,xlen,hlen,h,x) h_rev=h[::-1] resn=np.resize(res, lmax) cir_conv(x,h,lmax,resn,temp,h_rev) resn=resn[::-1] num=len(resn) c='c' gp(resn,num,c) graphy='<img src="http://kingspp.pythonanywhere.com/media/plots/test.png" height="400px" width="500px" ></img>' res_rev='The Circular Convolution of x(n) and y(n) is: ' + str(resn) return render_to_response('dsp/circular_conv.html', {'form':form, 'input1': xd, 'input2':hd, 'output':res_rev, 'graphy':graphy,'right_now':datetime.now()}, context_instance=RequestContext(request)) else: form = Output() return render_to_response('dsp/circular_conv.html', {'form': form,'right_now':datetime.now()}, context_instance=RequestContext(request))
def linear_conv(request): if request.method == 'POST': form = Output(request.POST) if form.is_valid(): cd = form.cleaned_data input1 = cd['input1'] input2 = cd['input2'] x=arr_conv(input1) h=arr_conv(input2) xd="x(n) = " + str(x) hd="h(n) = " + str(h) resultd=np.convolve(x, h) num=len(resultd) result = str(resultd) output = "The Linear Convolution of x(n) and y(n) is: " + result c='l' gp(resultd,num,c) graphy='<img src="http://kingspp.pythonanywhere.com/media/plots/test.png" height="400px" width="500px" ></img>' return render_to_response('dsp/linear_conv.html', {'form':form, 'input1': xd, 'input2': hd, 'output':output, 'graphy':graphy, 'right_now':datetime.now()}, context_instance=RequestContext(request)) else: form = Output() return render_to_response('dsp/linear_conv.html', {'form': form,'right_now':datetime.now()}, context_instance=RequestContext(request))
def cross_corr(request): if request.method == 'POST': form = Output(request.POST) if form.is_valid(): cd = form.cleaned_data input1 = cd['input1'] input2 = cd['input2'] x=arr_conv(input1) h=arr_conv(input2) output=np.correlate(x,h,'full') output=np.asarray(output) c='cc' num=len(output) gp(output,num,c) graphy='<img src="http://kingspp.pythonanywhere.com/media/plots/test.png" height="400px" width="500px" ></img>' output = 'The Crosscorrelation of x(n) and h(n) is : ' + str(output) indispx='Input Sequence x(n): ' + '[' + str(input1) + ']' indisph='Input Sequence h(n): ' + '[' + str(input2) + ']' return render_to_response('dsp/cross_corr.html', {'form':form, 'input1': indispx,'input2': indisph, 'output':output, 'graphy':graphy,'right_now':datetime.now()}, context_instance=RequestContext(request)) else: form = Output() return render_to_response('dsp/cross_corr.html', {'form': form,'right_now':datetime.now()}, context_instance=RequestContext(request))
def ndft(request): if request.method == 'POST': form = Ndft_form(request.POST) if form.is_valid(): cd = form.cleaned_data input1 = cd['input1'] x=arr_conv(input1) output = np.fft.fftn(x) num=len(output) c='nd' gp(output,num,c) graphy='<img src="http://kingspp.pythonanywhere.com/media/plots/test.png" height="400px" width="500px" aligh="center"></img>' output = 'The N-Point Discrete Fourier Transform of x(n) is : ' + str(output) indisp='Input Sequence x(n): ' + '[' + str(input1) + ']' return render_to_response('dsp/ndft.html', {'form':form, 'input1': indisp, 'output':output, 'graphy':graphy,'right_now':datetime.now()}, context_instance=RequestContext(request)) else: form = Ndft_form() return render_to_response('dsp/ndft.html', {'form': form,'right_now':datetime.now()}, context_instance=RequestContext(request))