def setUp(self): self.figs = [] self.logger = dcs.Logger(10) self.bpe_results = dcs.BpeResults() self.opts = dcs.Opts() self.plots = {'innovs': True, 'convergence': True, 'correlation': True, 'info_svd': True, \ 'covariance': True}
def test_pprint(self): opts = dcs.Opts() with dcs.capture_output() as out: opts.pprint(indent=2) lines = out.getvalue().strip().split('\n') out.close() self.assertEqual(lines[0], 'Opts') self.assertEqual(lines[1], ' case_name = ') self.assertEqual(lines[3], ' save_plot = False') self.assertEqual(lines[-1], ' names = []')
def setUp(self): self.time = np.arange(0, 10, 0.1) self.data = np.sin(self.time) self.label = 'Sin' self.type_ = 'population' self.opts = dcs.Opts() self.opts.names = ['Name 1'] self.truth = dcs.TruthPlotter(self.time, np.cos(self.time)) self.data_matrix = np.column_stack((self.data, self.truth.data)) self.second_y_scale = 1000000 self.fig = None
def setUp(self): self.time = np.arange(0, 5, 1. / 12) + 2000 num_bins = 5 self.data = np.random.rand(len(self.time), num_bins) mag = self.data.cumsum(axis=1)[:, -1] self.data = self.data / np.expand_dims(mag, axis=1) self.label = 'Plot bar testing' self.legend = ['Value 1', 'Value 2', 'Value 3', 'Value 4', 'Value 5'] self.opts = dcs.Opts() self.opts.show_plot = False self.colormap = 'seismic' self.figs = []
def setUp(self): self.time = np.arange(0, 10, 0.1) + 2000 num_channels = 5 self.data = np.random.rand(len(self.time), num_channels) mag = self.data.cumsum(axis=1)[:, -1] self.data = 10 * self.data / np.expand_dims(mag, axis=1) self.label = 'Plot description' self.type_ = 'percentage' self.opts = dcs.Opts() self.opts.show_plot = False self.legend = ['Value 1', 'Value 2', 'Value 3', 'Value 4', 'Value 5'] self.colormap = 'seismic' self.figs = [] self.second_y_scale = 1000000
def setUp(self): self.fig = plt.figure() self.fig.canvas.set_window_title('Figure Title') ax = self.fig.add_subplot(111) x = np.arange(0, 10, 0.1) y = np.sin(x) ax.plot(x, y) ax.set_title('X vs Y') ax.set_xlabel('time [years]') ax.set_ylabel('value [radians]') self.opts = dcs.Opts() self.opts.case_name = 'Testing' self.opts.show_plot = True self.opts.save_plot = False self.opts.save_path = dcs.get_tests_dir()
def setUp(self): num = 10 self.figs = [] self.data = dcs.unit(np.random.rand(num, num), axis=0) self.labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] self.type_ = 'percentage' self.opts = dcs.Opts() self.opts.case_name = 'Testing Correlation' self.matrix_name = 'Not a Correlation Matrix' self.sym = self.data.copy() for j in range(num): for i in range(num): if i == j: self.sym[i, j] = 1 elif i > j: self.sym[i, j] = self.data[j, i]
def test_plot2(self): opts = dcs.Opts() (inc_cost, inc_qaly, icer_out, order, icer_data, self.fig) = dcs.icer(self.cost, self.qaly, \ make_plot=True, opts=opts, baseline=0) temp = self.inc_cost temp[0] = 0 np.testing.assert_array_equal(inc_cost, temp, 'Incremental cost mismatch.') temp = self.inc_qaly temp[0] = 0 np.testing.assert_array_equal(inc_qaly, temp, 'Incremental QALY mismatch.') temp = self.icer_out temp[0] = np.nan np.testing.assert_array_equal(icer_out, temp, 'ICER mismatch.') np.testing.assert_array_equal(order, self.order, 'Order mismatch.') self.assertTrue(isinstance(self.fig, plt.Figure))
def setUp(self): self.costs = np.array([1, 0.1, 0.05, 0.01]) self.opts = dcs.Opts() self.opts.show_plot = False self.figs = []
def test_get_names_unsuccessful(self): opts = dcs.Opts() opts.names = ['Name 1', 'Name 2'] name = opts.get_names(2) self.assertEqual(name, '')
def test_new_attr(self): opts = dcs.Opts() with self.assertRaises(AttributeError): opts.new_field_that_does_not_exist = 1
def test_calling(self): opts = dcs.Opts() for field in self.opts_fields: self.assertTrue(hasattr(opts, field))
typical=100, minstep=0.1)) # Run code if rerun: (bpe_results, results) = dcs.run_bpe(opti_opts) else: bpe_results = dcs.BpeResults.load( os.path.join(opti_opts.output_folder, opti_opts.output_results)) results = sim_model( sim_params) # just re-run, nothing is actually saved by this model # Plot results if make_plots: # build opts opts = dcs.Opts() opts.case_name = 'Model Results' opts.save_path = dcs.get_output_dir() opts.save_plot = True # make model plots dcs.plot_time_history(time, results, description='Output vs. Time', opts=opts, truth=truth) # make BPE plots bpe_plots = {'innovs': True, 'convergence': False, 'correlation': True, 'info_svd': True, \ 'covariance': False} dcs.plot_bpe_results(bpe_results, opts, plots=bpe_plots)