示例#1
0
def test_ndim_kmeans():
    with util_numpy.test_uses_numpy() as np:
        k = 4
        max_it = 10
        max_dba_it = 20
        # series = np.array(
        #     [[[0., 0], [1, 2], [1, 0], [1, 0]],
        #      [[0., 1], [2, 0], [0, 0], [0, 0]],
        #      [[1., 2], [0, 0], [0, 0], [0, 1]],
        #      [[0., 0], [1, 2], [1, 0], [1, 0]],
        #      [[0., 1], [2, 0], [0, 0], [0, 0]],
        #      [[1., 2], [0, 0], [0, 0], [0, 1]]])
        series = [np.array([[0., 0], [1, 2], [1, 0], [1, 0]]),
             np.array([[0., 1], [2, 0], [0, 0], [0, 0]]),
             np.array([[1., 2], [0, 0], [0, 0], [0, 1]]),
             np.array([[0., 0], [1, 2], [1, 0], [1, 0]]),
             np.array([[0., 1], [2, 0], [0, 0], [0, 0]]),
             np.array([[1., 2], [0, 0], [0, 0], [0, 1]])]
        print(type(series))
        # print(series.shape)
        # window = int(series.shape[1] * 1.0)
        window=None
        print(f'window={window}')

        # Perform k-means
        tic = time.perf_counter()
        model = KMeans(k=k, max_it=max_it, max_dba_it=max_dba_it, drop_stddev=2,
                       dists_options={"window": window},
                       initialize_with_kmedoids=False,
                       initialize_with_kmeanspp=False)
        cluster_idx, performed_it = model.fit(series, use_c=False, use_parallel=False)
        toc = time.perf_counter()
        print(f'DBA ({performed_it} iterations: {toc - tic:0.4f} sec')
示例#2
0
def test_nparray_kmeans():
    with util_numpy.test_uses_numpy() as np:
        k = 4
        max_it = 10
        max_dba_it = 20

        series = np.array([[0., 0, 1, 2, 1, 0, 1, 0, 0],
                           [0., 1, 2, 0, 0, 0, 0, 0, 0],
                           [1., 2, 0, 0, 0, 0, 0, 1, 1],
                           [0., 0, 1, 2, 1, 0, 1, 0, 0],
                           [0., 1, 2, 0, 0, 0, 0, 0, 0],
                           [1., 2, 0, 0, 0, 0, 0, 1, 1]])
        print(type(series))
        print(series.shape)
        window = int(series.shape[1] * 1.0)

        # Perform k-means
        tic = time.perf_counter()
        model = KMeans(k=k,
                       max_it=max_it,
                       max_dba_it=max_dba_it,
                       dists_options={"window": window},
                       initialize_with_kmedoids=False,
                       initialize_with_kmeanspp=True)
        cluster_idx, performed_it = model.fit(series,
                                              use_c=True,
                                              use_parallel=False)
        toc = time.perf_counter()
        print(f'DBA ({performed_it} iterations: {toc - tic:0.4f} sec')

        if directory and not dtwvis.test_without_visualization():
            try:
                import matplotlib.pyplot as plt
            except ImportError:
                raise MatplotlibException("No matplotlib available")
            fig, ax = plt.subplots(nrows=k,
                                   ncols=2,
                                   figsize=(10, 4),
                                   sharex='all',
                                   sharey='all')
            fn = directory / "test_nparray_barycenter.png"

            all_idx = set()
            for ki in range(k):
                ax[ki, 0].plot(model.means[ki])
                for idx in cluster_idx[ki]:
                    ax[ki, 1].plot(series[idx], alpha=0.3)
                    if idx in all_idx:
                        raise Exception(f'Series in multiple clusters: {idx}')
                    all_idx.add(idx)
            assert (len(all_idx) == len(series))
            fig.savefig(str(fn))
            plt.close()
示例#3
0
def test_ndim_kmeans(use_c, use_parallel):
    with util_numpy.test_uses_numpy() as np:
        random.seed(3980)
        np.random.seed(3980)
        k = 2
        max_it = 10
        max_dba_it = 20
        series = np.array([[[0., 0], [1, 2], [1, 0], [1, 0]],
                           [[0., 1], [2, 0], [0, 0], [0, 0]],
                           [[1., 2], [0, 0], [0, 0], [0, 1]],
                           [[0., 0], [1, 2], [1, 0], [1, 0]],
                           [[0., 1], [2, 0], [0, 0], [0, 0]],
                           [[1., 2], [0, 0], [0, 0], [0, 1]]])
        window = None
        # Perform k-means
        tic = time.perf_counter()
        model = KMeans(k=k,
                       max_it=max_it,
                       max_dba_it=max_dba_it,
                       drop_stddev=2,
                       dists_options={"window": window},
                       initialize_with_kmedoids=False,
                       initialize_with_kmeanspp=False)
        cluster_idx, performed_it = model.fit(series,
                                              use_c=use_c,
                                              use_parallel=use_parallel)
        toc = time.perf_counter()
        # print(f'DBA ({performed_it} iterations: {toc - tic:0.4f} sec')
        # for ki in range(k):
        #     print(f'Cluster {ki+1}: {model.cluster_idx[ki]}')
        #     print(model.means[ki])
        assert set(model.cluster_idx[0]) == {
            1, 2, 4, 5
        }, f'{model.cluster_idx[0]} != {{1, 2, 4, 5}}'
        assert set(
            model.cluster_idx[1]) == {0,
                                      3}, f'{model.cluster_idx[1]} != {{0, 3}}'
示例#4
0
def test_trace_kmeans():
    with util_numpy.test_uses_numpy() as np:
        k = 4
        max_it = 10
        max_dba_it = 20
        rsrc_fn = os.path.join(os.path.abspath(os.path.dirname(__file__)),
                               'rsrc', 'Trace_TRAIN.txt')
        data = np.loadtxt(rsrc_fn)
        labels = data[:, 0]
        series = data[:, 1:]
        mask = np.full((len(labels), ), False, dtype=bool)
        mask[:] = (labels == 1)
        # c = series[0, :]
        print(type(series))
        print(series.shape)
        window = int(series.shape[1] * 1.0)

        # Z-normalize sequences
        series = (series -
                  series.mean(axis=1)[:, None]) / series.std(axis=1)[:, None]
        # Align start and/or end values
        # avg_start = series[:, :20].mean(axis=1)
        # avg_end = series[:, 20:].mean(axis=1)
        # series = (series - avg_end[:, None])

        # Perform k-means
        tic = time.perf_counter()
        model = KMeans(k=k,
                       max_it=max_it,
                       max_dba_it=max_dba_it,
                       drop_stddev=2,
                       dists_options={"window": window},
                       initialize_with_kmedoids=False,
                       initialize_with_kmeanspp=True)
        try:
            cluster_idx, performed_it = model.fit(series,
                                                  use_c=True,
                                                  use_parallel=False)
        except PyClusteringException:
            return
        toc = time.perf_counter()
        print(f'DBA ({performed_it} iterations: {toc - tic:0.4f} sec')

        if directory and not dtwvis.test_without_visualization():
            try:
                import matplotlib.pyplot as plt
            except ImportError:
                raise MatplotlibException("No matplotlib available")
            fig, ax = plt.subplots(nrows=k,
                                   ncols=2,
                                   figsize=(10, 4),
                                   sharex='all',
                                   sharey='all')
            fn = directory / "test_trace_barycenter.png"

            all_idx = set()
            for ki in range(k):
                ax[ki, 0].plot(model.means[ki])
                for idx in cluster_idx[ki]:
                    ax[ki, 1].plot(series[idx], alpha=0.3)
                    if idx in all_idx:
                        raise Exception(f'Series in multiple clusters: {idx}')
                    all_idx.add(idx)
            assert (len(all_idx) == len(series))
            fig.savefig(str(fn))
            plt.close()

            fig, ax = plt.subplots(nrows=k,
                                   ncols=1,
                                   figsize=(5, 4),
                                   sharex='all',
                                   sharey='all')
            fn = directory / "test_trace_barycenter_solution.png"
            for i in range(len(labels)):
                ax[int(labels[i]) - 1].plot(series[i], alpha=0.3)
            fig.savefig(str(fn))
            plt.close()
示例#5
0
def test_trace_kmeans_differencing():
    with util_numpy.test_uses_numpy() as np, util_numpy.test_uses_scipy() as scipy:
        k = 4
        max_it = 10
        max_dba_it = 20
        nb_prob_samples = 0
        use_c = True
        rsrc_fn = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'rsrc', 'Trace_TRAIN.txt')
        data = np.loadtxt(rsrc_fn)
        labels = data[:, 0]
        series = data[:, 1:]
        mask = np.full((len(labels),), False, dtype=bool)
        mask[:] = (labels == 1)
        # c = series[0, :]
        print(type(series))
        print(series.shape)
        window = int(series.shape[1] * 0.5)

        # Differencing
        # The baseline differences are not relevant thus we cluster based
        # on the result of differencing.
        # Also the high-freq noise dominates the local differences, thus
        # we apply a low-pass filter first.
        signal = scipy.import_signal()
        series_orig = series.copy()
        series = np.diff(series, n=1, axis=1)
        fs = 100  # sample rate, Hz
        cutoff = 10  # cut off frequency, Hz
        nyq = 0.5 * fs  # Nyquist frequency
        b, a = signal.butter(2, cutoff / nyq, btype='low', analog=False, output='ba')
        series = signal.filtfilt(b, a, series, axis=1)

        # Perform k-means
        tic = time.perf_counter()
        model = KMeans(k=k, max_it=max_it, max_dba_it=max_dba_it, drop_stddev=1,
                       nb_prob_samples=nb_prob_samples,
                       dists_options={"window": window},
                       initialize_with_kmedoids=False,
                       initialize_with_kmeanspp=True)
        try:
            cluster_idx, performed_it = model.fit(series, use_c=use_c, use_parallel=False)
        except PyClusteringException:
            return
        toc = time.perf_counter()
        print(f'DBA ({performed_it} iterations: {toc - tic:0.4f} sec')

        if directory and not dtwvis.test_without_visualization():
            try:
                import matplotlib.pyplot as plt
            except ImportError:
                raise MatplotlibException("No matplotlib available")
            fig, ax = plt.subplots(nrows=k, ncols=3, figsize=(10,4),
                                   sharex='all', sharey='all')
            fn = directory / "test_trace_barycenter.png"

            all_idx = set()
            mask = np.full((k, len(series_orig)), False, dtype=bool)
            for ki in range(k):
                ax[ki, 0].plot(model.means[ki])
                for idx in cluster_idx[ki]:
                    ax[ki, 2].plot(series_orig[idx], alpha=0.3)
                    mask[ki, idx] = True
                    if idx in all_idx:
                        raise Exception(f'Series in multiple clusters: {idx}')
                    all_idx.add(idx)

            series_orig = (series_orig - series_orig.mean(axis=1)[:, None]) / series_orig.std(axis=1)[:, None]
            for ki, mean in enumerate(model.means):
                # dba = dba_loop(series_orig, c=None, mask=mask[ki, :],
                #                max_it=max_it, thr=None, use_c=use_c,
                #                nb_prob_samples=nb_prob_samples)
                print(mean.shape)
                dba = np.r_[0, mean].cumsum()
                ax[ki, 1].plot(dba)
            assert(len(all_idx) == len(series))
            ax[0, 0].set_title("DBA Differencing + LP")
            ax[0, 1].set_title("DBA Original series")
            ax[0, 2].set_title("Clustered series")
            fig.savefig(str(fn))
            plt.close()

            fig, ax = plt.subplots(nrows=k, ncols=1, figsize=(5, 4),
                                   sharex='all', sharey='all')
            fn = directory / "test_trace_barycenter_solution.png"
            for i in range(len(labels)):
                ax[int(labels[i]) - 1].plot(series_orig[i], alpha=0.3)
            fig.savefig(str(fn))
            plt.close()