示例#1
0
    def test_betax1(self):
        bx, by = wave.betaxy((1, 19), (1, 2))
        bx1 = wave.betax1(19, (1, 2))
        self.allclose(bx[0][0], bx1[0])
        out = np.empty_like(bx1)
        bx1 = wave.betax1(19, (1, 2), out=out)
        self.allclose(bx[0][0], out[0])

        bx, by = wave.betaxy((1, 19), 2)
        bx1 = wave.betax1(19, 2)
        self.allclose(bx[0], bx1)
示例#2
0
    def test_betaxy(self):
        bx, by = wave.betaxy(self.shape, self.ks)
        self.allclose(self.betax, bx)
        self.allclose(self.betay, by)

        out = np.empty_like(bx), np.empty_like(by)
        wave.betaxy(self.shape, self.ks, out=out)
        self.allclose(self.betax, out[0])
        self.allclose(self.betay, out[1])

        bx, by = wave.betaxy(self.shape, self.ks[1])
        self.allclose(self.betax[1], bx)
        self.allclose(self.betay[1], by)
        self.isfloat(bx)
        self.isfloat(by)
示例#3
0
def mean_betaphi(field, k0):
    """Calculates mean beta and phi of a given field."""
    b = blackman(field.shape[-2:])
    f = fft2(field * b)  #filter it with blackman..
    betax, betay = betaxy(field.shape[-2:], k0)
    beta, phi = _fft_betaphi(f, betax, betay)
    return beta, phi
示例#4
0
def fft_betaxy(shape, k0):
    bx, by = betaxy(shape[-2:], np.asarray(k0, FDTYPE)[..., None])
    return bx, by  #np.broadcast_to(bx,shape),np.broadcast_to(by,shape)