示例#1
0
def irfftn(a, axes=None, lastsize=0, inorm=0, nthreads=1):
    return fft.c2r(a,
                   axes=axes,
                   lastsize=lastsize,
                   forward=False,
                   inorm=inorm,
                   nthreads=nthreads)
示例#2
0
def _hessian(x, psfhat, padding, nthreads, unpad_x, unpad_y, lastsize):
    xhat = iFs(np.pad(x, padding, mode='constant'), axes=(1, 2))
    xhat = r2c(xhat, axes=(1, 2), nthreads=nthreads, forward=True, inorm=0)
    xhat = c2r(xhat * psfhat,
               axes=(1, 2),
               forward=False,
               lastsize=lastsize,
               inorm=2,
               nthreads=nthreads)
    return Fs(xhat, axes=(1, 2))[:, unpad_x, unpad_y]
示例#3
0
 def convolveb(self, x):
     xhat = iFs(np.pad(x, self.paddingb, mode='constant'), axes=self.ax)
     xhat = r2c(xhat,
                axes=self.ax,
                nthreads=self.nthreads,
                forward=True,
                inorm=0)
     xhat = c2r(xhat * self.psfhatb,
                axes=self.ax,
                forward=False,
                lastsize=self.lastsizeb,
                inorm=2,
                nthreads=self.nthreads)
     return Fs(xhat, axes=self.ax)[:, self.unpad_xb, self.unpad_yb]
示例#4
0
def convolve2gaussres(image, xx, yy, gaussparf, nthreads, gausspari=None, pfrac=0.5, norm_kernel=False):
    """
    Convolves the image to a specified resolution.
    
    Parameters
    ----------
    Image - (nband, nx, ny) array to convolve
    xx/yy - coordinates on the grid in the same units as gaussparf.
    gaussparf - tuple containing Gaussian parameters of desired resolution (emaj, emin, pa).
    gausspari - initial resolution . By default it is assumed that the image is a clean component image with no associated resolution. 
                If beampari is specified, it must be a tuple containing gausspars for each imaging band in the same format.
    nthreads - number of threads to use for the FFT's.
    pfrac - padding used for the FFT based convolution. Will pad by pfrac/2 on both sides of image 
    """
    nband, nx, ny = image.shape
    padding, unpad_x, unpad_y = get_padding_info(nx, ny, pfrac)
    ax = (1, 2)  # axes over which to perform fft
    lastsize = ny + np.sum(padding[-1])

    gausskern = Gaussian2D(xx, yy, gaussparf, normalise=norm_kernel)
    gausskern = np.pad(gausskern[None], padding, mode='constant')
    gausskernhat = r2c(iFs(gausskern, axes=ax), axes=ax, forward=True, nthreads=nthreads, inorm=0)

    image = np.pad(image, padding, mode='constant')
    imhat = r2c(iFs(image, axes=ax), axes=ax, forward=True, nthreads=nthreads, inorm=0)

    # convolve to desired resolution
    if gausspari is None:
        imhat *= gausskernhat
    else:
        for i in range(nband):
            thiskern = Gaussian2D(xx, yy, gausspari[i], normalise=norm_kernel)
            thiskern = np.pad(thiskern[None], padding, mode='constant')
            thiskernhat = r2c(iFs(thiskern, axes=ax), axes=ax, forward=True, nthreads=nthreads, inorm=0)

            convkernhat = np.where(np.abs(thiskernhat)>0.0, gausskernhat/thiskernhat, 0.0)

            imhat[i] *= convkernhat[0]

    image = Fs(c2r(imhat, axes=ax, forward=False, lastsize=lastsize, inorm=2, nthreads=nthreads), axes=ax)[:, unpad_x, unpad_y]

    return image, gausskern[:, unpad_x, unpad_y]