env = NormalizeWrapper(env) env = ImgWrapper(env) # to make the images from 160x120x3 into 3x160x120 env = ActionWrapper(env) env = DtRewardWrapper(env) # Set seeds seed(args.seed) state_dim = env.observation_space.shape action_dim = env.action_space.shape[0] max_action = float(env.action_space.high[0]) # Initialize policy policy = DDPG(state_dim, action_dim, max_action, net_type="cnn") replay_buffer = utils.ReplayBuffer(args.replay_buffer_max_size) # Evaluate untrained policy evaluations = [evaluate_policy(env, policy)] exp.metric("rewards", evaluations[0]) total_timesteps = 0 timesteps_since_eval = 0 episode_num = 0 done = True episode_reward = None env_counter = 0 while total_timesteps < args.max_timesteps: if done:
env = gym.make("Duckietown-loop_obstacles-v0") # Wrappers env = NormalizeWrapper(env) # Set seeds seed(args.seed) state_dim = env.observation_space.shape action_dim = env.action_space.shape[0] max_action = float(env.action_space.high[0]) # Initialize policy policy = DDPG(state_dim, action_dim, max_action, net_type="dense") replay_buffer = utils.ReplayBuffer() # Evaluate untrained policy evaluations = [evaluate_policy(env, policy)] exp.metric("rewards", evaluations[0]) total_timesteps = 0 timesteps_since_eval = 0 episode_num = 0 done = True episode_reward = None env_counter = 0 while total_timesteps < args.max_timesteps: if done: