def qt_lopq(): from dvaapp.models import Retriever, Indexer, TEvent from dvaapp.tasks import perform_retriever_creation dc = Retriever() args = {'components': 32, 'm': 8, 'v': 8, 'sub': 128} dc.algorithm = Retriever.LOPQ dc.source_filters = { 'indexer_shasum': Indexer.objects.get(name="inception").shasum } dc.arguments = args dc.save() clustering_task = TEvent() clustering_task.arguments = {'retriever_pk': dc.pk} clustering_task.operation = 'perform_retriever_creation' clustering_task.save() perform_retriever_creation(clustering_task.pk)
def ci(): """ Perform Continuous Integration testing using Travis """ import django sys.path.append(os.path.dirname(__file__)) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dva.settings") django.setup() import base64 from django.core.files.uploadedfile import SimpleUploadedFile from dvaui.view_shared import handle_uploaded_file, pull_vdn_list \ , import_vdn_dataset_url from dvaapp.models import Video, TEvent, VDNServer, DVAPQL, Retriever, DeepModel from django.conf import settings from dvaapp.processing import DVAPQLProcess from dvaapp.tasks import perform_dataset_extraction, perform_indexing, perform_export, perform_import, \ perform_retriever_creation, perform_detection, \ perform_video_segmentation, perform_transformation for fname in glob.glob('tests/ci/*.mp4'): name = fname.split('/')[-1].split('.')[0] f = SimpleUploadedFile(fname, file(fname).read(), content_type="video/mp4") handle_uploaded_file(f, name, False) if sys.platform != 'darwin': for fname in glob.glob('tests/*.mp4'): name = fname.split('/')[-1].split('.')[0] f = SimpleUploadedFile(fname, file(fname).read(), content_type="video/mp4") handle_uploaded_file(f, name, False) for fname in glob.glob('tests/*.zip'): name = fname.split('/')[-1].split('.')[0] f = SimpleUploadedFile(fname, file(fname).read(), content_type="application/zip") handle_uploaded_file(f, name) for i, v in enumerate(Video.objects.all()): if v.dataset: arguments = {'sync': True} perform_dataset_extraction( TEvent.objects.create(video=v, arguments=arguments).pk) else: arguments = {'sync': True} perform_video_segmentation( TEvent.objects.create(video=v, arguments=arguments).pk) arguments = {'index': 'inception', 'target': 'frames'} perform_indexing( TEvent.objects.create(video=v, arguments=arguments).pk) if i == 0: # save travis time by just running detection on first video # face_mtcnn arguments = {'detector': 'face'} dt = TEvent.objects.create(video=v, arguments=arguments) perform_detection(dt.pk) arguments = { 'filters': { 'event_id': dt.pk }, } perform_transformation( TEvent.objects.create(video=v, arguments=arguments).pk) # coco_mobilenet arguments = {'detector': 'coco'} dt = TEvent.objects.create(video=v, arguments=arguments) perform_detection(dt.pk) arguments = { 'filters': { 'event_id': dt.pk }, } perform_transformation( TEvent.objects.create(video=v, arguments=arguments).pk) # inception on crops from detector arguments = { 'index': 'inception', 'target': 'regions', 'filters': { 'event_id': dt.pk, 'w__gte': 50, 'h__gte': 50 } } perform_indexing( TEvent.objects.create(video=v, arguments=arguments).pk) # assign_open_images_text_tags_by_id(TEvent.objects.create(video=v).pk) temp = TEvent.objects.create(video=v, arguments={'destination': "FILE"}) perform_export(temp.pk) temp.refresh_from_db() fname = temp.arguments['file_name'] f = SimpleUploadedFile(fname, file("{}/exports/{}".format( settings.MEDIA_ROOT, fname)).read(), content_type="application/zip") vimported = handle_uploaded_file(f, fname) perform_import( TEvent.objects.create(video=vimported, arguments={ "source": "LOCAL" }).pk) dc = Retriever() args = {} args['components'] = 32 args['m'] = 8 args['v'] = 8 args['sub'] = 64 dc.algorithm = Retriever.LOPQ dc.source_filters = { 'indexer_shasum': DeepModel.objects.get(name="inception", model_type=DeepModel.INDEXER).shasum } dc.arguments = args dc.save() clustering_task = TEvent() clustering_task.arguments = {'retriever_pk': dc.pk} clustering_task.operation = 'perform_retriever_creation' clustering_task.save() perform_retriever_creation(clustering_task.pk) query_dict = { 'process_type': DVAPQL.QUERY, 'image_data_b64': base64.encodestring(file('tests/query.png').read()), 'tasks': [{ 'operation': 'perform_indexing', 'arguments': { 'index': 'inception', 'target': 'query', 'next_tasks': [{ 'operation': 'perform_retrieval', 'arguments': { 'count': 20, 'retriever_pk': Retriever.objects.get(name='inception').pk } }] } }] } launch_workers_and_scheduler_from_environment() qp = DVAPQLProcess() qp.create_from_json(query_dict) qp.launch() qp.wait() server, datasets, detectors = pull_vdn_list(1) for k in datasets: if k['name'] == 'MSCOCO_Sample_500': print 'FOUND MSCOCO SAMPLE' import_vdn_dataset_url(VDNServer.objects.get(pk=1), k['url'], None, k)