示例#1
0
 def test_nice_coordinates(self):
     p = pegasus_graph(3, nice_coordinates=True)
     c = chimera_graph(24, coordinates=True)
     num_edges = 0
     for u, v in fragmented_edges(p):
         self.assertTrue(c.has_edge(u, v))
         num_edges += 1
     #This is a weird edgecount: each node produces 5 extra edges for the internal connections
     #between fragments corresponding to a pegasus qubit.  But then we need to delete the odd
     #couplers, which aren't included in the chimera graph -- odd couplers make a perfect
     #matching, so thats 1/2 an edge per node.
     self.assertEqual(p.number_of_edges() + 9 * p.number_of_nodes()//2, num_edges)
示例#2
0
def draw_chimera_yield(G, **kwargs):
    """Draws the given graph G with highlighted faults, according to layout.

    Parameters
    ----------
    G : NetworkX graph
        The graph to be parsed for faults

    unused_color : tuple or color string (optional, default (0.9,0.9,0.9,1.0))
        The color to use for nodes and edges of G which are not faults.
        If unused_color is None, these nodes and edges will not be shown at all.

    fault_color : tuple or color string (optional, default (1.0,0.0,0.0,1.0))
        A color to represent nodes absent from the graph G. Colors should be
        length-4 tuples of floats between 0 and 1 inclusive.

    fault_shape : string, optional (default='x')
        The shape of the fault nodes. Specification is as matplotlib.scatter
        marker, one of 'so^>v<dph8'.

    fault_style : string, optional (default='dashed')
        Edge fault line style (solid|dashed|dotted|dashdot)

    kwargs : optional keywords
       See networkx.draw_networkx() for a description of optional keywords,
       with the exception of the `pos` parameter which is not used by this
       function. If `linear_biases` or `quadratic_biases` are provided,
       any provided `node_color` or `edge_color` arguments are ignored.
    """
    try:
        assert (G.graph["family"] == "chimera")
        m = G.graph["rows"]
        n = G.graph["columns"]
        t = G.graph["tile"]
        coordinates = G.graph["labels"] == "coordinate"
    except:
        raise ValueError("Target chimera graph needs to have columns, rows, \
        tile, and label attributes to be able to identify faulty qubits.")

    perfect_graph = chimera_graph(m, n, t, coordinates=coordinates)

    draw_yield(G, chimera_layout(perfect_graph), perfect_graph, **kwargs)
示例#3
0
def find_clique_embedding(k, m=None, target_graph=None):
    """Find an embedding of a k-sized clique on a Pegasus graph (target_graph).

    This clique is found by transforming the Pegasus graph into a K2,2 Chimera graph and then
    applying a Chimera clique finding algorithm. The results are then converted back in terms of
    Pegasus coordinates.

    Note: If target_graph is None, m will be used to generate a m-by-m Pegasus graph. Hence m and
    target_graph cannot both be None.

    Args:
        k (int/iterable/:obj:`networkx.Graph`): Number of members in the requested clique; list of nodes;
          a complete graph that you want to embed onto the target_graph
        m (int): Number of tiles in a row of a square Pegasus graph
        target_graph (:obj:`networkx.Graph`): A Pegasus graph

    Returns:
        dict: A dictionary representing target_graphs's clique embedding. Each dictionary key
        represents a node in said clique. Each corresponding dictionary value is a list of pegasus
        coordinates that should be chained together to represent said node.

    """
    # Organize parameter values
    if target_graph is None:
        if m is None:
            raise TypeError("m and target_graph cannot both be None.")
        target_graph = pegasus_graph(m)

    m = target_graph.graph['rows']  # We only support square Pegasus graphs
    _, nodes = k

    # Deal with differences in ints vs coordinate target_graphs
    if target_graph.graph['labels'] == 'nice':
        fwd_converter = get_nice_to_pegasus_fn(m=m)
        back_converter = get_pegasus_to_nice_fn(m=m)
        pegasus_coords = [fwd_converter(*p) for p in target_graph.nodes]
        back_translate = lambda embedding: {
            key: [back_converter(*p) for p in chain]
            for key, chain in embedding.items()
        }
    elif target_graph.graph['labels'] == 'int':
        # Convert nodes in terms of Pegasus coordinates
        coord_converter = pegasus_coordinates(m)
        pegasus_coords = map(coord_converter.tuple, target_graph.nodes)

        # A function to convert our final coordinate embedding to an ints embedding
        back_translate = lambda embedding: {
            key: list(coord_converter.ints(chain))
            for key, chain in embedding.items()
        }
    else:
        pegasus_coords = target_graph.nodes
        back_translate = lambda embedding: embedding

    # Break each Pegasus qubits into six Chimera fragments
    # Note: By breaking the graph in this way, you end up with a K2,2 Chimera graph
    fragment_tuple = get_tuple_fragmentation_fn(target_graph)
    fragments = fragment_tuple(pegasus_coords)

    # Create a K2,2 Chimera graph
    # Note: 6 * m because Pegasus qubits split into six pieces, so the number of rows and columns
    #   get multiplied by six
    chim_m = 6 * m
    chim_graph = chimera_graph(chim_m, t=2, coordinates=True)

    # Determine valid fragment couplers in a K2,2 Chimera graph
    edges = chim_graph.subgraph(fragments).edges()

    # Find clique embedding in K2,2 Chimera graph
    embedding_processor = processor(edges,
                                    M=chim_m,
                                    N=chim_m,
                                    L=2,
                                    linear=False)
    chimera_clique_embedding = embedding_processor.tightestNativeClique(
        len(nodes))

    # Convert chimera fragment embedding in terms of Pegasus coordinates
    defragment_tuple = get_tuple_defragmentation_fn(target_graph)
    pegasus_clique_embedding = map(defragment_tuple, chimera_clique_embedding)
    pegasus_clique_embedding = dict(zip(nodes, pegasus_clique_embedding))
    pegasus_clique_embedding = back_translate(pegasus_clique_embedding)

    if len(pegasus_clique_embedding) != len(nodes):
        raise ValueError("No clique embedding found")

    return pegasus_clique_embedding
示例#4
0
def find_clique_embedding(k, m=None, target_graph=None):
    """Find an embedding for a clique in a Pegasus graph.

    Given a clique (fully connected graph) and target Pegasus graph, attempts
    to find an embedding by transforming the Pegasus graph into a :math:`K_{2,2}`
    Chimera graph and then applying a Chimera clique-finding algorithm. Results
    are converted back to Pegasus coordinates.

    Args:
        k (int/iterable/:obj:`networkx.Graph`): A complete graph to embed,
            formatted as a number of nodes, node labels, or a NetworkX graph.
        m (int): Number of tiles in a row of a square Pegasus graph. Required to
            generate an m-by-m Pegasus graph when `target_graph` is None.
        target_graph (:obj:`networkx.Graph`): A Pegasus graph. Required when `m`
            is None.

    Returns:
        dict: An embedding as a dict, where keys represent the clique's nodes and
        values, formatted as lists, represent chains of pegasus coordinates.

    Examples:
        This example finds an embedding for a :math:`K_3` complete graph in a
        2-by-2 Pegaus graph.

        >>> from dwave.embedding.pegasus import find_clique_embedding
        ...
        >>> print(find_clique_embedding(3, 2))    # doctest: +SKIP
        {0: [10, 34], 1: [35, 11], 2: [32, 12]}

    """
    # Organize parameter values
    if target_graph is None:
        if m is None:
            raise TypeError("m and target_graph cannot both be None.")
        target_graph = pegasus_graph(m)

    m = target_graph.graph['rows']     # We only support square Pegasus graphs
    _, nodes = k

    # Deal with differences in ints vs coordinate target_graphs
    if target_graph.graph['labels'] == 'nice':
        fwd_converter = get_nice_to_pegasus_fn()
        back_converter = get_pegasus_to_nice_fn()
        pegasus_coords = [fwd_converter(*p) for p in target_graph.nodes]
        back_translate = lambda embedding: {key: [back_converter(*p) for p in chain]
                                      for key, chain in embedding.items()}
    elif target_graph.graph['labels'] == 'int':
        # Convert nodes in terms of Pegasus coordinates
        coord_converter = pegasus_coordinates(m)
        pegasus_coords = map(coord_converter.tuple, target_graph.nodes)

        # A function to convert our final coordinate embedding to an ints embedding
        back_translate = lambda embedding: {key: list(coord_converter.ints(chain))
                                      for key, chain in embedding.items()}
    else:
        pegasus_coords = target_graph.nodes
        back_translate = lambda embedding: embedding

    # Break each Pegasus qubits into six Chimera fragments
    # Note: By breaking the graph in this way, you end up with a K2,2 Chimera graph
    fragment_tuple = get_tuple_fragmentation_fn(target_graph)
    fragments = fragment_tuple(pegasus_coords)

    # Create a K2,2 Chimera graph
    # Note: 6 * m because Pegasus qubits split into six pieces, so the number of rows and columns
    #   get multiplied by six
    chim_m = 6 * m
    chim_graph = chimera_graph(chim_m, t=2, coordinates=True)

    # Determine valid fragment couplers in a K2,2 Chimera graph
    edges = chim_graph.subgraph(fragments).edges()

    # Find clique embedding in K2,2 Chimera graph
    embedding_processor = processor(edges, M=chim_m, N=chim_m, L=2, linear=False)
    chimera_clique_embedding = embedding_processor.tightestNativeClique(len(nodes))

    # Convert chimera fragment embedding in terms of Pegasus coordinates
    defragment_tuple = get_tuple_defragmentation_fn(target_graph)
    pegasus_clique_embedding = map(defragment_tuple, chimera_clique_embedding)
    pegasus_clique_embedding = dict(zip(nodes, pegasus_clique_embedding))
    pegasus_clique_embedding = back_translate(pegasus_clique_embedding)

    if len(pegasus_clique_embedding) != len(nodes):
        raise ValueError("No clique embedding found")

    return pegasus_clique_embedding