示例#1
0
def test_surrogate_analysis_fdr():
    rng = np.random.RandomState(0)

    data = np.load("../examples/data/eeg_32chans_10secs.npy")
    ts1 = data[0, 0:512].ravel()
    ts2 = data[1, 0:512].ravel()

    p_val, surr_vals, surrogates, r_value = surrogate_analysis(
        ts1,
        ts2,
        num_surr=1000,
        estimator_func=None,
        ts1_no_surr=False,
        rng=rng)

    num_ts = 2
    num_pvals = num_ts * (num_ts - 1) / 2.0
    num_pvals = np.int32(num_pvals)
    p_vals = np.ones([num_pvals, 1]) * p_val
    h, crit_p = fdr(p_vals, 0.01, 'pdep')

    expected_result = np.load("data/test_ts_surrogates_fdr_h.npy")
    assert h == expected_result

    expected_result = np.load("data/test_ts_surrogates_fdr_crit_p.npy")
    assert crit_p == expected_result
示例#2
0
def test_surrogate_analysis():
    rng = np.random.RandomState(0)

    data = np.load("../examples/data/eeg_32chans_10secs.npy")
    ts1 = data[0, 0:512].ravel()
    ts2 = data[1, 0:512].ravel()

    p_vals, surr_vals, surrogates, r_value = surrogate_analysis(
        ts1,
        ts2,
        num_surr=1000,
        estimator_func=None,
        ts1_no_surr=False,
        rng=rng)

    expected_result = np.load("data/test_ts_surrogates.npy").squeeze()
    np.testing.assert_array_equal(surrogates, expected_result)

    expected_result = np.load("data/test_ts_surrogates_p_val.npy").squeeze()
    assert p_vals == expected_result

    np.save("/tmp/out.npy", surr_vals)

    expected_result = np.load("data/test_ts_surrogates_corr.npy").squeeze()
    np.testing.assert_array_almost_equal(surr_vals, expected_result)
示例#3
0
def test_surrogate_analysis2():
    rng = np.random.RandomState(0)

    data = np.load("../examples/data/eeg_32chans_10secs.npy")
    ts1 = data[0, 0:512].ravel()
    ts2 = data[1, 0:512].ravel()

    p_val, surr_vals, surrogates, r_value = surrogate_analysis(
        ts1, ts2, num_surr=1000, ts1_no_surr=True, rng=rng)

    expected_result = np.load("data/test_ts_surrogates2.npy")
    np.testing.assert_array_equal(surrogates, expected_result)

    expected_result = np.load("data/test_ts_surrogates2_p_val.npy")
    assert p_val == expected_result
示例#4
0
def test_surrogate_analysis2_fdr():
    rng = np.random.RandomState(0)

    data = np.load("../examples/data/eeg_32chans_10secs.npy")
    ts1 = data[0, 0:512].ravel()
    ts2 = data[1, 0:512].ravel()

    p_val, surr_vals, surrogates, r_value = surrogate_analysis(
        ts1, ts2, num_surr=1000, ts1_no_surr=True, rng=rng)

    num_ts = 2
    p_vals = np.ones([num_ts * (num_ts - 1) / 2, 1]) * p_val
    h, crit_p = fdr(p_vals, 0.01, 'pdep')

    expected_result = np.load("data/test_ts_surrogates2_fdr_h.npy")
    assert h == expected_result
示例#5
0
# -*- coding: utf-8 -*-

import numpy as np
np.set_printoptions(precision=3, linewidth=256)

from dyfunconn.ts import fdr, surrogate_analysis

if __name__ == "__main__":
    rng = np.random.RandomState(0)

    data = np.load(
        "/home/makism/Github/dyfunconn/examples/data/eeg_32chans_10secs.npy")
    ts1 = data[0, :].ravel()
    ts2 = data[1, :].ravel()

    p_val, corr_surr, surrogates, r_value = surrogate_analysis(
        ts1, ts2, num_surr=1000, ts1_no_surr=True, rng=rng)

    num_ts = 2
    p_vals = np.ones([num_ts * (num_ts - 1) / 2, 1]) * p_val
    q = 0.01
    method = 'pdep'
    h, crit_p = fdr(p_vals, q, method)

    print("p-value: {0}, h: {1} (critical p-value: {2})".format(
        p_val, h, crit_p))