示例#1
0
    def test_results_radau(self):

        gd = GridData(num_segments=3,
                      transcription_order=[5, 3, 3],
                      segment_ends=_segends,
                      transcription='radau-ps')

        p = Problem(model=Group())

        ivc = p.model.add_subsystem(name='ivc',
                                    subsys=IndepVarComp(),
                                    promotes_outputs=['*'])

        ivc.add_output('t_initial', val=0.0, units='s')
        ivc.add_output('t_duration', val=100.0, units='s')

        p.model.add_subsystem('time', TimeComp(grid_data=gd, units='s'))

        p.model.connect('t_initial', 'time.t_initial')
        p.model.connect('t_duration', 'time.t_duration')

        p.setup(check=True, force_alloc_complex=True)

        p.run_model()

        # Affine transform the nodes [0, 100]
        dt_dptau = (p['t_duration'] - p['t_initial']) / 2.0

        nodes = []

        dt_dstau_per_node = []

        for i in range(gd.num_segments):
            a, b = gd.segment_ends[i], gd.segment_ends[
                i + 1]  # segment ends in phase tau space

            # ratio of phase tau to segment tau within the segment
            dptau_dstau = (b - a) / 2.0

            dt_dstau = dt_dptau * dptau_dstau * np.ones(
                gd.subset_num_nodes_per_segment['all'][i])
            dt_dstau_per_node.extend(dt_dstau.tolist())

            # nodes of current segment in segment tau space
            nodes_segi_stau = _lgr_nodes[gd.transcription_order[i]]

            # nodes of current segment in phase tau space
            nodes_segi_ptau = a + (nodes_segi_stau + 1) * dptau_dstau

            # nodes in time
            nodes_time = (nodes_segi_ptau + 1) * dt_dptau

            nodes.extend(nodes_time.tolist())

        assert_almost_equal(p['time.time'], nodes, decimal=4)
        assert_almost_equal(p['time.dt_dstau'], dt_dstau_per_node)
示例#2
0
    def setUp(self):
        gd = GridData(num_segments=2,
                      segment_ends=np.array([0., 2., 4.]),
                      transcription='radau-ps',
                      transcription_order=3)

        self.gd = gd

        self.p = Problem(model=Group())

        control_opts = {
            'u': {
                'units': 'm',
                'shape': (1, ),
                'dynamic': True,
                'opt': True
            },
            'v': {
                'units': 'm',
                'shape': (3, 2),
                'dynamic': True,
                'opt': True
            }
        }

        indep_comp = IndepVarComp()
        self.p.model.add_subsystem('indep', indep_comp, promotes=['*'])

        indep_comp.add_output('controls:u',
                              val=np.zeros((gd.subset_num_nodes['all'], 1)),
                              units='m')

        indep_comp.add_output('controls:v',
                              val=np.zeros((gd.subset_num_nodes['all'], 3, 2)),
                              units='m')

        self.p.model.add_subsystem('endpoint_defect_comp',
                                   subsys=ControlEndpointDefectComp(
                                       grid_data=gd,
                                       control_options=control_opts))

        self.p.model.connect('controls:u', 'endpoint_defect_comp.controls:u')
        self.p.model.connect('controls:v', 'endpoint_defect_comp.controls:v')

        self.p.setup(force_alloc_complex=True)

        self.p['controls:u'] = np.random.random(
            (gd.subset_num_nodes['all'], 1))
        self.p['controls:v'] = np.random.random(
            (gd.subset_num_nodes['all'], 3, 2))

        self.p.run_model()
    def test_control_interp_scalar(self,
                                   transcription='gauss-lobatto',
                                   compressed=True):

        segends = np.array([0.0, 3.0, 10.0])

        gd = GridData(num_segments=2,
                      transcription_order=5,
                      segment_ends=segends,
                      transcription=transcription,
                      compressed=compressed)

        p = Problem(model=Group())

        controls = {
            'a': {
                'units': 'm',
                'shape': (1, ),
                'dynamic': True
            },
            'b': {
                'units': 'm',
                'shape': (1, ),
                'dynamic': True
            }
        }

        ivc = IndepVarComp()
        p.model.add_subsystem('ivc', ivc, promotes_outputs=['*'])

        ivc.add_output('controls:a',
                       val=np.zeros((gd.subset_num_nodes['control_input'], 1)),
                       units='m')

        ivc.add_output('controls:b',
                       val=np.zeros((gd.subset_num_nodes['control_input'], 1)),
                       units='m')

        ivc.add_output('t_initial', val=0.0, units='s')
        ivc.add_output('t_duration', val=10.0, units='s')

        p.model.add_subsystem('time_comp',
                              subsys=TimeComp(grid_data=gd, units='s'),
                              promotes_inputs=['t_initial', 't_duration'],
                              promotes_outputs=['time', 'dt_dstau'])

        p.model.add_subsystem('control_interp_comp',
                              subsys=ControlInterpComp(
                                  grid_data=gd,
                                  control_options=controls,
                                  time_units='s'),
                              promotes_inputs=['controls:*'])

        p.model.connect('dt_dstau', 'control_interp_comp.dt_dstau')

        p.setup(force_alloc_complex=True)

        p['t_initial'] = 0.0
        p['t_duration'] = 3.0

        p.run_model()

        t = p['time']
        p['controls:a'][:, 0] = f_a(t[gd.subset_node_indices['control_input']])
        p['controls:b'][:, 0] = f_b(t[gd.subset_node_indices['control_input']])

        p.run_model()

        a_value_expected = f_a(t)
        b_value_expected = f_b(t)

        a_rate_expected = f1_a(t)
        b_rate_expected = f1_b(t)

        a_rate2_expected = f2_a(t)
        b_rate2_expected = f2_b(t)

        assert_almost_equal(p['control_interp_comp.control_values:a'],
                            np.atleast_2d(a_value_expected).T)

        assert_almost_equal(p['control_interp_comp.control_values:b'],
                            np.atleast_2d(b_value_expected).T)

        assert_almost_equal(p['control_interp_comp.control_rates:a_rate'],
                            np.atleast_2d(a_rate_expected).T)

        assert_almost_equal(p['control_interp_comp.control_rates:b_rate'],
                            np.atleast_2d(b_rate_expected).T)

        assert_almost_equal(p['control_interp_comp.control_rates:a_rate2'],
                            np.atleast_2d(a_rate2_expected).T)

        assert_almost_equal(p['control_interp_comp.control_rates:b_rate2'],
                            np.atleast_2d(b_rate2_expected).T)

        np.set_printoptions(linewidth=1024)
        cpd = p.check_partials(compact_print=False,
                               out_stream=None,
                               method='cs')
        assert_check_partials(cpd)
示例#4
0
    def test_state_interp_comp_radau(self):

        gd = GridData(num_segments=1,
                      transcription_order=3,
                      segment_ends=np.array([0, 10]),
                      transcription='radau-ps')

        p = Problem(model=Group())

        states = {
            'x': {
                'units': 'm',
                'shape': (1, )
            },
            'v': {
                'units': 'm/s',
                'shape': (1, )
            }
        }

        X_ivc = IndepVarComp()
        p.model.add_subsystem('X_ivc',
                              X_ivc,
                              promotes=['state_disc:x', 'state_disc:v'])

        X_ivc.add_output('state_disc:x',
                         val=np.zeros(gd.subset_num_nodes['state_disc']),
                         units='m')

        X_ivc.add_output('state_disc:v',
                         val=np.zeros(gd.subset_num_nodes['state_disc']),
                         units='m/s')

        dt_dtau_ivc = IndepVarComp()
        dt_dtau_ivc.add_output('dt_dstau',
                               val=0.0 * np.zeros(gd.subset_num_nodes['col']),
                               units='s')

        p.model.add_subsystem('dt_dstau_ivc',
                              dt_dtau_ivc,
                              promotes=['dt_dstau'])

        p.model.add_subsystem('state_interp_comp',
                              subsys=StateInterpComp(transcription='radau-ps',
                                                     grid_data=gd,
                                                     state_options=states,
                                                     time_units='s'))

        p.model.connect('state_disc:x', 'state_interp_comp.state_disc:x')
        p.model.connect('state_disc:v', 'state_interp_comp.state_disc:v')
        p.model.connect('dt_dstau', 'state_interp_comp.dt_dstau')

        p.setup(force_alloc_complex=True)

        lgr_nodes, lgr_weights = lgr(3, include_endpoint=True)
        t_disc = (lgr_nodes + 1.0) * 5.0
        t_col = t_disc[:-1]

        # Test 1:  Let x = t**2, f = 2*t
        p['state_disc:x'] = t_disc**2

        # Test 1:  Let v = t**3-10*t**2, f = 3*t**2 - 20*t
        p['state_disc:v'] = t_disc**3 - 10 * t_disc**2

        p['dt_dstau'] = 10 / 2.0

        p.run_model()

        if SHOW_PLOTS:  # pragma: no cover
            f, ax = plt.subplots(2, 1)

            t_disc = np.array([0, 5, 10])
            t_col = np.array([2.5, 7.5])

            t = np.linspace(0, 10, 100)
            x1 = t**2
            xdot1 = 2 * t

            x2 = t**3 - 10 * t**2
            xdot2 = 3 * t**2 - 20 * t

            ax[0].plot(t, x1, 'b-', label='$x$')
            ax[0].plot(t, xdot1, 'b--', label='$\dot{x}$')
            ax[0].plot(t_disc, p['state_disc:x'], 'bo', label='$X_d:x$')
            ax[0].plot(t_col,
                       p['state_interp_comp.state_col:x'],
                       'bv',
                       label='$X_c:x$')
            ax[0].plot(t_col,
                       p['state_interp_comp.staterate_col:x'],
                       marker='v',
                       color='None',
                       mec='b',
                       label='$Xdot_c:x$')

            ax[1].plot(t, x2, 'r-', label='$v$')
            ax[1].plot(t, xdot2, 'r--', label='$\dot{v}$')
            ax[1].plot(t_disc, p['state_disc:v'], 'ro', label='$X_d:v$')
            ax[1].plot(t_col,
                       p['state_interp_comp.state_col:v'],
                       'rv',
                       label='$X_c:v$')
            ax[1].plot(t_col,
                       p['state_interp_comp.staterate_col:v'],
                       marker='v',
                       color='None',
                       mec='r',
                       label='$Xdot_c:v$')

            ax[0].legend(loc='upper left', ncol=3)
            ax[1].legend(loc='upper left', ncol=3)

            plt.show()

        # Test 1
        assert_almost_equal(p['state_interp_comp.staterate_col:x'][:, 0],
                            2 * t_col)

        # Test 2
        assert_almost_equal(p['state_interp_comp.staterate_col:v'][:, 0],
                            3 * t_col**2 - 20 * t_col)

        cpd = p.check_partials(compact_print=True, method='cs')
        assert_check_partials(cpd, atol=1.0E-5)
示例#5
0
    def test_state_interp_comp_lobatto(self):

        segends = np.array([0.0, 3.0, 10.0])

        gd = GridData(num_segments=2,
                      transcription_order=3,
                      segment_ends=segends,
                      transcription='gauss-lobatto')

        p = Problem(model=Group())

        states = {
            'x': {
                'units': 'm',
                'shape': (1, )
            },
            'v': {
                'units': 'm/s',
                'shape': (1, )
            }
        }

        X_ivc = IndepVarComp()
        p.model.add_subsystem('X_ivc',
                              X_ivc,
                              promotes=['state_disc:x', 'state_disc:v'])

        X_ivc.add_output('state_disc:x',
                         val=np.zeros(gd.subset_num_nodes['state_disc']),
                         units='m')

        X_ivc.add_output('state_disc:v',
                         val=np.zeros(gd.subset_num_nodes['state_disc']),
                         units='m/s')

        F_ivc = IndepVarComp()
        p.model.add_subsystem(
            'F_ivc', F_ivc, promotes=['staterate_disc:x', 'staterate_disc:v'])

        F_ivc.add_output('staterate_disc:x',
                         val=np.zeros(gd.subset_num_nodes['state_disc']),
                         units='m/s')

        F_ivc.add_output('staterate_disc:v',
                         val=np.zeros(gd.subset_num_nodes['state_disc']),
                         units='m/s**2')

        dt_dtau_ivc = IndepVarComp()
        p.model.add_subsystem('dt_dstau_ivc',
                              dt_dtau_ivc,
                              promotes=['dt_dstau'])

        dt_dtau_ivc.add_output('dt_dstau',
                               val=0.0 * np.zeros(gd.subset_num_nodes['col']),
                               units='s')

        p.model.add_subsystem('state_interp_comp',
                              subsys=StateInterpComp(
                                  transcription='gauss-lobatto',
                                  grid_data=gd,
                                  state_options=states,
                                  time_units='s'))

        p.model.connect('state_disc:x', 'state_interp_comp.state_disc:x')
        p.model.connect('state_disc:v', 'state_interp_comp.state_disc:v')
        p.model.connect('staterate_disc:x',
                        'state_interp_comp.staterate_disc:x')
        p.model.connect('staterate_disc:v',
                        'state_interp_comp.staterate_disc:v')
        p.model.connect('dt_dstau', 'state_interp_comp.dt_dstau')

        p.setup(force_alloc_complex=True)

        segends_disc = segends[np.array((0, 1, 1, 2), dtype=int)]

        p['state_disc:x'] = [x(t) for t in segends_disc]
        p['staterate_disc:x'] = [f_x(t) for t in segends_disc]

        p['state_disc:v'] = [v(t) for t in segends_disc]
        p['staterate_disc:v'] = [f_v(t) for t in segends_disc]

        p['dt_dstau'] = (segends[1:] - segends[:-1]) / 2.0

        p.run_model()

        t_disc = segends_disc
        t_col = (segends[1:] + segends[:-1]) / 2.0

        if SHOW_PLOTS:  # pragma: no cover
            f, ax = plt.subplots(2, 1)

            t = np.linspace(0, 10, 100)
            x1 = x(t)
            xdot1 = f_x(t)

            x2 = v(t)
            xdot2 = f_v(t)

            ax[0].plot(t, x1, 'b-', label='$x$')
            ax[0].plot(t, xdot1, 'b--', label='$\dot{x}$')
            ax[0].plot(t_disc, p['state_disc:x'], 'bo', label='$X_d:x$')
            ax[0].plot(t_col,
                       p['state_interp_comp.state_col:x'],
                       'bv',
                       label='$X_c:x$')
            ax[0].plot(t_col,
                       p['state_interp_comp.staterate_col:x'],
                       marker='v',
                       color='None',
                       mec='b',
                       label='$Xdot_c:x$')

            ax[1].plot(t, x2, 'r-', label='$v$')
            ax[1].plot(t, xdot2, 'r--', label='$\dot{v}$')
            ax[1].plot(t_disc, p['state_disc:v'], 'ro', label='$X_d:v$')
            ax[1].plot(t_col,
                       p['state_interp_comp.state_col:v'],
                       'rv',
                       label='$X_c:v$')
            ax[1].plot(t_col,
                       p['state_interp_comp.staterate_col:v'],
                       marker='v',
                       color='None',
                       mec='r',
                       label='$Xdot_c:v$')

            ax[0].legend(loc='upper left', ncol=3)
            ax[1].legend(loc='upper left', ncol=3)

            plt.show()

        # Test 1
        assert_almost_equal(p['state_interp_comp.state_col:x'][:, 0], x(t_col))
        assert_almost_equal(p['state_interp_comp.staterate_col:x'][:, 0],
                            f_x(t_col))

        # Test 2
        assert_almost_equal(p['state_interp_comp.state_col:v'][:, 0], v(t_col))
        assert_almost_equal(p['state_interp_comp.staterate_col:v'][:, 0],
                            f_v(t_col))

        cpd = p.check_partials(compact_print=True, method='cs')
        assert_check_partials(cpd, atol=5.0E-5)
示例#6
0
    def test_state_interp_comp_lobatto_vectorized_different_orders(self):

        segends = np.array([0.0, 3.0, 10.0])

        gd = GridData(num_segments=2,
                      transcription_order=[3, 5],
                      segment_ends=segends,
                      transcription='gauss-lobatto')

        p = Problem(model=Group())

        states = {'pos': {'units': 'm', 'shape': (2, )}}

        X_ivc = IndepVarComp()
        p.model.add_subsystem('X_ivc', X_ivc, promotes=['state_disc:pos'])

        X_ivc.add_output('state_disc:pos',
                         val=np.zeros((gd.subset_num_nodes['state_disc'], 2)),
                         units='m')

        F_ivc = IndepVarComp()
        p.model.add_subsystem('F_ivc', F_ivc, promotes=['staterate_disc:pos'])

        F_ivc.add_output('staterate_disc:pos',
                         val=np.zeros((gd.subset_num_nodes['state_disc'], 2)),
                         units='m/s')

        dt_dtau_ivc = IndepVarComp()
        p.model.add_subsystem('dt_dstau_ivc',
                              dt_dtau_ivc,
                              promotes=['dt_dstau'])

        dt_dtau_ivc.add_output('dt_dstau',
                               val=0.0 * np.zeros(gd.subset_num_nodes['col']),
                               units='s')

        p.model.add_subsystem('state_interp_comp',
                              subsys=StateInterpComp(
                                  transcription='gauss-lobatto',
                                  grid_data=gd,
                                  state_options=states,
                                  time_units='s'))

        p.model.connect('state_disc:pos', 'state_interp_comp.state_disc:pos')
        p.model.connect('staterate_disc:pos',
                        'state_interp_comp.staterate_disc:pos')
        p.model.connect('dt_dstau', 'state_interp_comp.dt_dstau')

        p.setup(force_alloc_complex=True)

        segends_disc = np.array((0, 3, 3, 6.5, 10))

        p['state_disc:pos'][:, 0] = [x(t) for t in segends_disc
                                     ]  # [0.0, 25.0, 25.0, 100.0]
        p['staterate_disc:pos'][:, 0] = [f_x(t) for t in segends_disc]

        p['state_disc:pos'][:, 1] = [v(t) for t in segends_disc]
        p['staterate_disc:pos'][:, 1] = [f_v(t) for t in segends_disc]

        p['dt_dstau'] = [3.0 / 2., 7.0 / 2, 7.0 / 2]

        p.run_model()

        cpd = p.check_partials(compact_print=True, method='cs')
        assert_check_partials(cpd, atol=5.0E-5)
示例#7
0
    def setUp(self):
        transcription = 'gauss-lobatto'

        gd = GridData(num_segments=4,
                      segment_ends=np.array([0., 2., 4., 5., 12.]),
                      transcription=transcription,
                      transcription_order=3)

        self.p = Problem(model=Group())

        state_options = {
            'x': {
                'units': 'm',
                'shape': (1, )
            },
            'v': {
                'units': 'm/s',
                'shape': (3, 2)
            }
        }

        indep_comp = IndepVarComp()
        self.p.model.add_subsystem('indep', indep_comp, promotes_outputs=['*'])

        indep_comp.add_output('dt_dstau',
                              val=np.zeros((gd.subset_num_nodes['col'])))

        indep_comp.add_output('f_approx:x',
                              val=np.zeros((gd.subset_num_nodes['col'], 1)),
                              units='m')
        indep_comp.add_output('f_computed:x',
                              val=np.zeros((gd.subset_num_nodes['col'], 1)),
                              units='m')

        indep_comp.add_output('f_approx:v',
                              val=np.zeros((gd.subset_num_nodes['col'], 3, 2)),
                              units='m/s')
        indep_comp.add_output('f_computed:v',
                              val=np.zeros((gd.subset_num_nodes['col'], 3, 2)),
                              units='m/s')

        self.p.model.add_subsystem('defect_comp',
                                   subsys=CollocationComp(
                                       grid_data=gd,
                                       state_options=state_options))

        self.p.model.connect('f_approx:x', 'defect_comp.f_approx:x')
        self.p.model.connect('f_approx:v', 'defect_comp.f_approx:v')
        self.p.model.connect('f_computed:x', 'defect_comp.f_computed:x')
        self.p.model.connect('f_computed:v', 'defect_comp.f_computed:v')
        self.p.model.connect('dt_dstau', 'defect_comp.dt_dstau')

        self.p.setup(force_alloc_complex=True)

        self.p['dt_dstau'] = np.random.random(gd.subset_num_nodes['col'])

        self.p['f_approx:x'] = np.random.random(
            (gd.subset_num_nodes['col'], 1))
        self.p['f_approx:v'] = np.random.random(
            (gd.subset_num_nodes['col'], 3, 2))

        self.p['f_computed:x'] = np.random.random(
            (gd.subset_num_nodes['col'], 1))
        self.p['f_computed:v'] = np.random.random(
            (gd.subset_num_nodes['col'], 3, 2))

        self.p.run_model()
示例#8
0
    def test_continuity_comp(self,
                             transcription='gauss-lobatto',
                             compressed='compressed'):

        num_seg = 3

        gd = GridData(num_segments=num_seg,
                      transcription_order=[5, 3, 3],
                      segment_ends=[0.0, 3.0, 10.0, 20],
                      transcription=transcription,
                      compressed=compressed == 'compressed')

        self.p = Problem(model=Group())

        ivp = self.p.model.add_subsystem('ivc',
                                         subsys=IndepVarComp(),
                                         promotes_outputs=['*'])

        ndn = gd.subset_num_nodes['state_disc']
        nn = gd.subset_num_nodes['all']

        ivp.add_output('x', val=np.arange(nn), units='m')
        ivp.add_output('y', val=np.arange(nn), units='m/s')
        ivp.add_output('u', val=np.zeros((nn, 3)), units='deg')
        ivp.add_output('v', val=np.arange(nn), units='N')
        ivp.add_output('u_rate', val=np.zeros((nn, 3)), units='deg/s')
        ivp.add_output('v_rate', val=np.arange(nn), units='N/s')
        ivp.add_output('u_rate2', val=np.zeros((nn, 3)), units='deg/s**2')
        ivp.add_output('v_rate2', val=np.arange(nn), units='N/s**2')
        ivp.add_output('t_duration', val=121.0, units='s')

        self.p.model.add_design_var('x', lower=0, upper=100)

        state_options = {
            'x': StateOptionsDictionary(),
            'y': StateOptionsDictionary()
        }
        control_options = {
            'u': ControlOptionsDictionary(),
            'v': ControlOptionsDictionary()
        }

        state_options['x']['units'] = 'm'
        state_options['y']['units'] = 'm/s'

        control_options['u']['units'] = 'deg'
        control_options['u']['shape'] = (3, )
        control_options['u']['continuity'] = True

        control_options['v']['units'] = 'N'

        if transcription == 'gauss-lobatto':
            cnty_comp = GaussLobattoContinuityComp(
                grid_data=gd,
                time_units='s',
                state_options=state_options,
                control_options=control_options)
        elif transcription == 'radau-ps':
            cnty_comp = RadauPSContinuityComp(grid_data=gd,
                                              time_units='s',
                                              state_options=state_options,
                                              control_options=control_options)
        else:
            raise ValueError('unrecognized transcription')

        self.p.model.add_subsystem('cnty_comp', subsys=cnty_comp)
        # The sub-indices of state_disc indices that are segment ends
        segment_end_idxs = gd.subset_node_indices['segment_ends']

        self.p.model.connect('x',
                             'cnty_comp.states:x',
                             src_indices=segment_end_idxs)
        self.p.model.connect('y',
                             'cnty_comp.states:y',
                             src_indices=segment_end_idxs)

        self.p.model.connect('t_duration', 'cnty_comp.t_duration')

        size_u = nn * np.prod(control_options['u']['shape'])
        src_idxs_u = np.arange(size_u).reshape((nn, ) +
                                               control_options['u']['shape'])
        src_idxs_u = src_idxs_u[gd.subset_node_indices['segment_ends'], ...]

        size_v = nn * np.prod(control_options['v']['shape'])
        src_idxs_v = np.arange(size_v).reshape((nn, ) +
                                               control_options['v']['shape'])
        src_idxs_v = src_idxs_v[gd.subset_node_indices['segment_ends'], ...]

        self.p.model.connect('u',
                             'cnty_comp.controls:u',
                             src_indices=src_idxs_u,
                             flat_src_indices=True)

        self.p.model.connect('u_rate',
                             'cnty_comp.control_rates:u_rate',
                             src_indices=src_idxs_u,
                             flat_src_indices=True)

        self.p.model.connect('u_rate2',
                             'cnty_comp.control_rates:u_rate2',
                             src_indices=src_idxs_u,
                             flat_src_indices=True)

        self.p.model.connect('v',
                             'cnty_comp.controls:v',
                             src_indices=src_idxs_v,
                             flat_src_indices=True)

        self.p.model.connect('v_rate',
                             'cnty_comp.control_rates:v_rate',
                             src_indices=src_idxs_v,
                             flat_src_indices=True)

        self.p.model.connect('v_rate2',
                             'cnty_comp.control_rates:v_rate2',
                             src_indices=src_idxs_v,
                             flat_src_indices=True)

        self.p.setup(check=True, force_alloc_complex=True)

        self.p['x'] = np.random.rand(*self.p['x'].shape)
        self.p['y'] = np.random.rand(*self.p['y'].shape)
        self.p['u'] = np.random.rand(*self.p['u'].shape)
        self.p['v'] = np.random.rand(*self.p['v'].shape)
        self.p['u_rate'] = np.random.rand(*self.p['u'].shape)
        self.p['v_rate'] = np.random.rand(*self.p['v'].shape)
        self.p['u_rate2'] = np.random.rand(*self.p['u'].shape)
        self.p['v_rate2'] = np.random.rand(*self.p['v'].shape)

        self.p.run_model()

        for state in ('x', 'y'):
            expected_val = self.p[state][segment_end_idxs, ...][2::2, ...] - \
                self.p[state][segment_end_idxs, ...][1:-1:2, ...]

            assert_rel_error(
                self, self.p['cnty_comp.defect_states:{0}'.format(state)],
                expected_val.reshape((num_seg - 1, ) +
                                     state_options[state]['shape']))

        for ctrl in ('u', 'v'):

            expected_val = self.p[ctrl][segment_end_idxs, ...][2::2, ...] - \
                self.p[ctrl][segment_end_idxs, ...][1:-1:2, ...]

            assert_rel_error(
                self, self.p['cnty_comp.defect_controls:{0}'.format(ctrl)],
                expected_val.reshape((num_seg - 1, ) +
                                     control_options[ctrl]['shape']))

        np.set_printoptions(linewidth=1024)
        cpd = self.p.check_partials(method='cs', out_stream=None)
        assert_check_partials(cpd)
    def setUp(self):

        transcription = 'radau-ps'

        self.gd = gd = GridData(num_segments=2,
                                transcription_order=3,
                                segment_ends=[0.0, 3.0, 10.0],
                                transcription=transcription)

        ndn = gd.subset_num_nodes['disc']

        self.p = Problem(model=Group())

        controls = {
            'a': ControlOptionsDictionary(),
            'b': ControlOptionsDictionary(),
            'c': ControlOptionsDictionary(),
            'd': ControlOptionsDictionary()
        }

        controls['a'].update({'units': 'm', 'shape': (1, ), 'opt': False})
        controls['b'].update({'units': 's', 'shape': (3, ), 'opt': False})
        controls['c'].update({'units': 'kg', 'shape': (3, 3), 'opt': False})

        ivc = IndepVarComp()
        self.p.model.add_subsystem('ivc', ivc, promotes_outputs=['*'])

        ivc.add_output('a_disc', val=np.zeros((ndn, 1)), units='m')
        ivc.add_output('b_disc', val=np.zeros((ndn, 3)), units='s')
        ivc.add_output('c_disc', val=np.zeros((ndn, 3, 3)), units='kg')

        path_comp = RadauPathConstraintComp(grid_data=gd)

        self.p.model.add_subsystem('path_constraints', subsys=path_comp)

        path_comp._add_path_constraint('a',
                                       var_class='ode',
                                       shape=(1, ),
                                       lower=0,
                                       upper=10,
                                       units='m')
        path_comp._add_path_constraint('b',
                                       var_class='input_control',
                                       shape=(3, ),
                                       lower=0,
                                       upper=10,
                                       units='s')
        path_comp._add_path_constraint('c',
                                       var_class='control_rate2',
                                       shape=(3, 3),
                                       lower=0,
                                       upper=10,
                                       units='kg')

        self.p.model.connect('a_disc', 'path_constraints.all_values:a')
        self.p.model.connect('b_disc', 'path_constraints.all_values:b')
        self.p.model.connect('c_disc', 'path_constraints.all_values:c')

        self.p.setup()

        self.p.run_model()