def __init__(self, tau, y_init, y_attr, function_apps, name="Dmp", sigmoid_max_rate=-20,forcing_term_scaling="NO_SCALING"): super().__init__(1, tau, y_init, y_attr, name) dim_orig = self.dim_orig_ self.goal_system_ = ExponentialSystem(tau,y_init,y_attr,15,'goal') self.gating_system_ = SigmoidSystem(tau,np.ones(1),sigmoid_max_rate,0.9*tau,'gating') self.phase_system_ = TimeSystem(tau,False,'phase') alpha = 20.0 self.spring_system_ = SpringDamperSystem(tau,y_init,y_attr,alpha) self.function_approximators_ = function_apps self.forcing_term_scaling_ = forcing_term_scaling self.ts_train_ = None # Make room for the subsystems self.dim_ = 3*dim_orig+2 self.SPRING = np.arange(0*dim_orig+0, 0*dim_orig+0 +2*dim_orig) self.SPRING_Y = np.arange(0*dim_orig+0, 0*dim_orig+0 +dim_orig) self.SPRING_Z = np.arange(1*dim_orig+0, 1*dim_orig+0 +dim_orig) self.GOAL = np.arange(2*dim_orig+0, 2*dim_orig+0 +dim_orig) self.PHASE = np.arange(3*dim_orig+0, 3*dim_orig+0 + 1) self.GATING = np.arange(3*dim_orig+1, 3*dim_orig+1 + 1)
dyn_systems = [ ExponentialSystem(tau, initial_state, attractor_state, alpha) ] # TimeSystem dyn_systems.append(TimeSystem(tau)) # TimeSystem (but counting down instead of up) count_down = True dyn_systems.append(TimeSystem(tau, count_down, "TimeSystemCountDown")) # SigmoidSystem max_rate = -20 inflection_point = tau * 0.8 dyn_systems.append( SigmoidSystem(tau, initial_state, max_rate, inflection_point)) # SpringDamperSystem alpha = 12.0 dyn_systems.append( SpringDamperSystem(tau, initial_state, attractor_state, alpha)) # INTEGRATE ALL DYNAMICAL SYSTEMS IN THE ARRA # Loop through all systems, and do numerical integration and compute the analytical solution figure_number = 1 for dyn_system in dyn_systems: name = dyn_system.name_ print(name + ": \t") all_data = [] for demo_label in demo_labels:
class Dmp(DynamicalSystem,Parameterizable): def __init__(self, tau, y_init, y_attr, function_apps, name="Dmp", sigmoid_max_rate=-20,forcing_term_scaling="NO_SCALING"): super().__init__(1, tau, y_init, y_attr, name) dim_orig = self.dim_orig_ self.goal_system_ = ExponentialSystem(tau,y_init,y_attr,15,'goal') self.gating_system_ = SigmoidSystem(tau,np.ones(1),sigmoid_max_rate,0.9*tau,'gating') self.phase_system_ = TimeSystem(tau,False,'phase') alpha = 20.0 self.spring_system_ = SpringDamperSystem(tau,y_init,y_attr,alpha) self.function_approximators_ = function_apps self.forcing_term_scaling_ = forcing_term_scaling self.ts_train_ = None # Make room for the subsystems self.dim_ = 3*dim_orig+2 self.SPRING = np.arange(0*dim_orig+0, 0*dim_orig+0 +2*dim_orig) self.SPRING_Y = np.arange(0*dim_orig+0, 0*dim_orig+0 +dim_orig) self.SPRING_Z = np.arange(1*dim_orig+0, 1*dim_orig+0 +dim_orig) self.GOAL = np.arange(2*dim_orig+0, 2*dim_orig+0 +dim_orig) self.PHASE = np.arange(3*dim_orig+0, 3*dim_orig+0 + 1) self.GATING = np.arange(3*dim_orig+1, 3*dim_orig+1 + 1) #print(self.SPRING) #print(self.SPRING_Y) #print(self.SPRING_Z) #print(self.GOAL) #print(self.PHASE) #print(self.GATING) def set_tau(self,tau): self.tau_ = tau # Set value in all relevant subsystems also self.spring_system_.set_tau(tau) if self.goal_system_: self.goal_system_.set_tau(tau) self.phase_system_ .set_tau(tau) self.gating_system_.set_tau(tau) def integrateStart(self): x = np.zeros(self.dim_) xd = np.zeros(self.dim_) # Start integrating goal system if it exists if self.goal_system_ is None: # No goal system, simply set goal state to attractor state x[self.GOAL] = self.attractor_state_ xd[self.GOAL] = 0.0 else: # Goal system exists. Start integrating it. (x[self.GOAL],xd[self.GOAL]) = self.goal_system_.integrateStart() # Set the attractor state of the spring system self.spring_system_.set_attractor_state(x[self.GOAL]) # Start integrating all futher subsystems (x[self.SPRING],xd[self.SPRING]) = self.spring_system_.integrateStart() (x[self.PHASE ],xd[self.PHASE ]) = self.phase_system_.integrateStart() (x[self.GATING],xd[self.GATING]) = self.gating_system_.integrateStart() # Add rates of change xd = self.differentialEquation(x) return (x,xd) def differentialEquation(self,x): n_dims = self.dim_ xd = np.zeros(x.shape) if self.goal_system_ is None: # If there is no dynamical system for the delayed goal, the goal is # simply the attractor state self.spring_system_.set_attractor_state(self.attractor_state_) # with zero change xd_goal = np.zeros(n_dims) else: # Integrate goal system and get current goal state self.goal_system_.set_attractor_state(self.attractor_state_) x_goal = x[self.GOAL] xd[self.GOAL] = self.goal_system_.differentialEquation(x_goal) # The goal state is the attractor state of the spring-damper system self.spring_system_.set_attractor_state(x_goal) # Integrate spring damper system #Forcing term is added to spring_state later xd[self.SPRING] = self.spring_system_.differentialEquation(x[self.SPRING]) # Non-linear forcing term phase and gating systems xd[self.PHASE] = self.phase_system_.differentialEquation(x[self.PHASE]) xd[self.GATING] = self.gating_system_.differentialEquation(x[self.GATING]) fa_output = self.computeFunctionApproximatorOutput(x[self.PHASE]) # Gate the output of the function approximators gating = x[self.GATING] forcing_term = gating*fa_output # Scale the forcing term, if necessary if (self.forcing_term_scaling_=="G_MINUS_Y0_SCALING"): g_minus_y0 = (self.attractor_state_-self.initial_state_) forcing_term = forcing_term*g_minus_y0 elif (self.forcing_term_scaling_=="AMPLITUDE_SCALING"): forcing_term = forcing_term*self.trajectory_amplitudes_ # Add forcing term to the ZD component of the spring state xd[self.SPRING_Z] += np.squeeze(forcing_term)/self.tau_ return xd def computeFunctionApproximatorOutput(self,phase_state): n_time_steps = phase_state.size n_dims = self.dim_orig_ fa_output = np.zeros([n_time_steps,n_dims]) for i_fa in range(n_dims): if self.function_approximators_[i_fa]: if self.function_approximators_[i_fa].isTrained(): fa_output[:,i_fa] = self.function_approximators_[i_fa].predict(phase_state) return fa_output def analyticalSolution(self,ts=None): if ts is None: if self.ts_train_ is None: print("Neither the argument 'ts' nor the member variable self.ts_train_ was set. Returning None.") return None else: # Set the times to the ones the Dmp was trained on. ts = self.ts_train_ n_time_steps = ts.size # INTEGRATE SYSTEMS ANALYTICALLY AS MUCH AS POSSIBLE # Integrate phase ( xs_phase, xds_phase) = self.phase_system_.analyticalSolution(ts) # Compute gating term ( xs_gating, xds_gating ) = self.gating_system_.analyticalSolution(ts) # Compute the output of the function approximator fa_outputs = self.computeFunctionApproximatorOutput(xs_phase) # Gate the output to get the forcing term forcing_terms = fa_outputs*xs_gating # Scale the forcing term, if necessary if (self.forcing_term_scaling_=="G_MINUS_Y0_SCALING"): g_minus_y0 = (self.attractor_state_-self.initial_state_) g_minus_y0_rep = np.tile(g_minus_y0,(n_time_steps,1)) forcing_terms *= g_minus_y0_rep elif (self.forcing_term_scaling_=="AMPLITUDE_SCALING"): trajectory_amplitudes_rep = np.tile(self.trajectory_amplitudes_,(n_time_steps,1)) forcing_terms *= trajectory_amplitudes_rep # Get current delayed goal if self.goal_system_ is None: # If there is no dynamical system for the delayed goal, the goal is # simply the attractor state xs_goal = np.tile(self.attractor_state_,(n_time_steps,1)) # with zero change xds_goal = np.zeros(xs_goal.shape) else: # Integrate goal system and get current goal state (xs_goal,xds_goal) = self.goal_system_.analyticalSolution(ts) xs = np.zeros([n_time_steps,self.dim_]) xds = np.zeros([n_time_steps,self.dim_]) xs[:,self.GOAL] = xs_goal xds[:,self.GOAL] = xds_goal xs[:,self.PHASE] = xs_phase xds[:,self.PHASE] = xds_phase xs[:,self.GATING] = xs_gating xds[:,self.GATING] = xds_gating # THE REST CANNOT BE DONE ANALYTICALLY # Reset the dynamical system, and get the first state damping = self.spring_system_.damping_coefficient_ localspring_system = SpringDamperSystem(self.tau_,self.initial_state_,self.attractor_state_,damping) # Set first attractor state localspring_system.set_attractor_state(xs_goal[0,:]) # Start integrating spring damper system (x_spring, xd_spring) = localspring_system.integrateStart() # For convenience SPRING = self.SPRING SPRING_Y = self.SPRING_Y SPRING_Z = self.SPRING_Z t0 = 0 xs[t0,SPRING] = x_spring xds[t0,SPRING] = xd_spring # Add forcing term to the acceleration of the spring state xds[0,SPRING_Z] = xds[0,SPRING_Z] + forcing_terms[t0,:]/self.tau_ for tt in range(1,n_time_steps): dt = ts[tt]-ts[tt-1] # Euler integration xs[tt,SPRING] = xs[tt-1,SPRING] + dt*xds[tt-1,SPRING] # Set the attractor state of the spring system localspring_system.set_attractor_state(xs[tt,self.GOAL]) # Integrate spring damper system xds[tt,SPRING] = localspring_system.differentialEquation(xs[tt,SPRING]) # If necessary add a perturbation. May be useful for some off-line tests. #RowVectorXd perturbation = RowVectorXd::Constant(dim_orig(),0.0) #if (analytical_solution_perturber_!=NULL) # for (int i_dim=0 i_dim<dim_orig() i_dim++) # // Sample perturbation from a normal Gaussian distribution # perturbation(i_dim) = (*analytical_solution_perturber_)() # Add forcing term to the acceleration of the spring state xds[tt,SPRING_Z] = xds[tt,SPRING_Z] + forcing_terms[tt,:]/self.tau_ #+ perturbation # Compute y component from z xds[tt,SPRING_Y] = xs[tt,SPRING_Z]/self.tau_ return ( xs, xds, forcing_terms, fa_outputs) def train(self,trajectory): # Set tau, initial_state and attractor_state from the trajectory self.set_tau(trajectory.ts_[-1]) self.set_initial_state(trajectory.ys_[0,:]) self.set_attractor_state(trajectory.ys_[-1,:]) # This needs to be computed for (optional) scaling of the forcing term. # Needs to be done BEFORE computeFunctionApproximatorInputsAndTargets self.trajectory_amplitudes_ = trajectory.getRangePerDim() (fa_input_phase, f_target) = self.computeFunctionApproximatorInputsAndTargets(trajectory) for dd in range(self.dim_orig_): fa_target = f_target[:,dd] self.function_approximators_[dd].train(fa_input_phase,fa_target) # Save the times steps on which the Dmp was trained. # This is just a convenience function to be able to call # analyticalSolution without the "ts" argument. self.ts_train_ = trajectory.ts_ def computeFunctionApproximatorInputsAndTargets(self,trajectory): n_time_steps = trajectory.ts_.size dim_data = trajectory.dim_ assert(self.dim_orig_==dim_data) (xs_ana,xds_ana,forcing_terms, fa_outputs) = self.analyticalSolution(trajectory.ts_) xs_goal = xs_ana[:,self.GOAL] xs_gating = xs_ana[:,self.GATING] xs_phase = xs_ana[:,self.PHASE] fa_inputs_phase = xs_phase # Get parameters from the spring-dampers system to compute inverse damping_coefficient = self.spring_system_.damping_coefficient_ spring_constant = self.spring_system_.spring_constant_ mass = self.spring_system_.mass_ # Usually, spring-damper system of the DMP should have mass==1 assert(mass==1.0) #Compute inverse tau = self.tau_ f_target = tau*tau*trajectory.ydds_ + (spring_constant*(trajectory.ys_-xs_goal) + damping_coefficient*tau*trajectory.yds_)/mass # Factor out gating term for dd in range(self.dim_orig_): f_target[:,dd] = f_target[:,dd]/np.squeeze(xs_gating) # Factor out scaling if (self.forcing_term_scaling_=="G_MINUS_Y0_SCALING"): g_minus_y0 = (self.attractor_state_-self.initial_state_) g_minus_y0_rep = np.tile(g_minus_y0,(n_time_steps,1)) f_target /= g_minus_y0_rep elif (self.forcing_term_scaling_=="AMPLITUDE_SCALING"): trajectory_amplitudes_rep = np.tile(self.trajectory_amplitudes_,(n_time_steps,1)) f_target /= trajectory_amplitudes_rep return (fa_inputs_phase, f_target) def statesAsTrajectory(self,ts, x_in, xd_in): # Left column is time return Trajectory(ts,x_in[:,self.SPRING_Y], xd_in[:,self.SPRING_Y], xd_in[:,self.SPRING_Z]/self.tau_) def getParameterVectorSelected(self): values = np.empty(0) for fa in self.function_approximators_: if fa.isTrained(): values = np.append(values,fa.getParameterVectorSelected()) return values def setParameterVectorSelected(self,values): size = self.getParameterVectorSelectedSize() assert(len(values)==size) offset = 0 for fa in self.function_approximators_: if fa.isTrained(): cur_size = fa.getParameterVectorSelectedSize() cur_values = values[offset:offset+cur_size] fa.setParameterVectorSelected(cur_values) offset += cur_size def getParameterVectorSelectedSize(self): size = 0 for fa in self.function_approximators_: if fa.isTrained(): size += fa.getParameterVectorSelectedSize() return size
class Dmp(DynamicalSystem,Parameterizable): def __init__(self, tau, y_init, y_attr, function_apps, name="Dmp", sigmoid_max_rate=-20,forcing_term_scaling="NO_SCALING"): super().__init__(1, tau, y_init, y_attr, name) dim_orig = self.dim_orig_ self.goal_system_ = ExponentialSystem(tau,y_init,y_attr,15,'goal') self.gating_system_ = SigmoidSystem(tau,np.ones(1),sigmoid_max_rate,0.9*tau,'gating') self.phase_system_ = TimeSystem(tau,False,'phase') alpha = 20.0 self.spring_system_ = SpringDamperSystem(tau,y_init,y_attr,alpha) self.function_approximators_ = function_apps self.forcing_term_scaling_ = forcing_term_scaling self.ts_train_ = None # Make room for the subsystems self.dim_ = 3*dim_orig+2 self.SPRING = np.arange(0*dim_orig+0, 0*dim_orig+0 +2*dim_orig) self.SPRING_Y = np.arange(0*dim_orig+0, 0*dim_orig+0 +dim_orig) self.SPRING_Z = np.arange(1*dim_orig+0, 1*dim_orig+0 +dim_orig) self.GOAL = np.arange(2*dim_orig+0, 2*dim_orig+0 +dim_orig) self.PHASE = np.arange(3*dim_orig+0, 3*dim_orig+0 + 1) self.GATING = np.arange(3*dim_orig+1, 3*dim_orig+1 + 1) #print(self.SPRING) #print(self.SPRING_Y) #print(self.SPRING_Z) #print(self.GOAL) #print(self.PHASE) #print(self.GATING) def set_tau(self,tau): self.tau_ = tau # Set value in all relevant subsystems also self.spring_system_.set_tau(tau) if self.goal_system_: self.goal_system_.set_tau(tau) self.phase_system_ .set_tau(tau) self.gating_system_.set_tau(tau) def integrateStart(self): x = np.zeros(self.dim_) xd = np.zeros(self.dim_) # Start integrating goal system if it exists if self.goal_system_ is None: # No goal system, simply set goal state to attractor state x[self.GOAL] = self.attractor_state_ xd[self.GOAL] = 0.0 else: # Goal system exists. Start integrating it. (x[self.GOAL],xd[self.GOAL]) = self.goal_system_.integrateStart() # Set the attractor state of the spring system self.spring_system_.set_attractor_state(x[self.GOAL]) # Start integrating all futher subsystems (x[self.SPRING],xd[self.SPRING]) = self.spring_system_.integrateStart() (x[self.PHASE ],xd[self.PHASE ]) = self.phase_system_.integrateStart() (x[self.GATING],xd[self.GATING]) = self.gating_system_.integrateStart() # Add rates of change xd = self.differentialEquation(x) return (x,xd) def differentialEquation(self,x): n_dims = self.dim_ xd = np.zeros(x.shape) if self.goal_system_ is None: # If there is no dynamical system for the delayed goal, the goal is # simply the attractor state self.spring_system_.set_attractor_state(self.attractor_state_) # with zero change xd_goal = np.zeros(n_dims) else: # Integrate goal system and get current goal state self.goal_system_.set_attractor_state(self.attractor_state_) x_goal = x[self.GOAL] xd[self.GOAL] = self.goal_system_.differentialEquation(x_goal) # The goal state is the attractor state of the spring-damper system self.spring_system_.set_attractor_state(x_goal) # Integrate spring damper system #Forcing term is added to spring_state later xd[self.SPRING] = self.spring_system_.differentialEquation(x[self.SPRING]) # Non-linear forcing term phase and gating systems xd[self.PHASE] = self.phase_system_.differentialEquation(x[self.PHASE]) xd[self.GATING] = self.gating_system_.differentialEquation(x[self.GATING]) fa_output = self.computeFunctionApproximatorOutput(x[self.PHASE]) # Gate the output of the function approximators gating = x[self.GATING] forcing_term = gating*fa_output # Scale the forcing term, if necessary if (self.forcing_term_scaling_=="G_MINUS_Y0_SCALING"): g_minus_y0 = (self.attractor_state_-self.initial_state_) forcing_term = forcing_term*g_minus_y0 elif (self.forcing_term_scaling_=="AMPLITUDE_SCALING"): forcing_term = forcing_term*self.trajectory_amplitudes_ # Add forcing term to the ZD component of the spring state xd[self.SPRING_Z] += np.squeeze(forcing_term)/self.tau_ return xd def computeFunctionApproximatorOutput(self,phase_state): n_time_steps = phase_state.size n_dims = self.dim_orig_ fa_output = np.zeros([n_time_steps,n_dims]) for i_fa in range(n_dims): if self.function_approximators_[i_fa]: if self.function_approximators_[i_fa].isTrained(): fa_output[:,i_fa] = self.function_approximators_[i_fa].predict(phase_state) return fa_output def analyticalSolution(self,ts=None): if ts is None: if self.ts_train_ is None: print("Neither the argument 'ts' nor the member variable self.ts_train_ was set. Returning None.") return None else: # Set the times to the ones the Dmp was trained on. ts = self.ts_train_ n_time_steps = ts.size # INTEGRATE SYSTEMS ANALYTICALLY AS MUCH AS POSSIBLE # Integrate phase ( xs_phase, xds_phase) = self.phase_system_.analyticalSolution(ts) # Compute gating term ( xs_gating, xds_gating ) = self.gating_system_.analyticalSolution(ts) # Compute the output of the function approximator fa_outputs = self.computeFunctionApproximatorOutput(xs_phase) # Gate the output to get the forcing term forcing_terms = fa_outputs*xs_gating # Scale the forcing term, if necessary if (self.forcing_term_scaling_=="G_MINUS_Y0_SCALING"): g_minus_y0 = (self.attractor_state_-self.initial_state_) g_minus_y0_rep = np.tile(g_minus_y0,(n_time_steps,1)) forcing_terms *= g_minus_y0_rep elif (self.forcing_term_scaling_=="AMPLITUDE_SCALING"): trajectory_amplitudes_rep = np.tile(self.trajectory_amplitudes_,(n_time_steps,1)) forcing_terms *= trajectory_amplitudes_rep # Get current delayed goal if self.goal_system_ is None: # If there is no dynamical system for the delayed goal, the goal is # simply the attractor state xs_goal = np.tile(self.attractor_state_,(n_time_steps,1)) # with zero change xds_goal = np.zeros(xs_goal.shape) else: # Integrate goal system and get current goal state (xs_goal,xds_goal) = self.goal_system_.analyticalSolution(ts) xs = np.zeros([n_time_steps,self.dim_]) xds = np.zeros([n_time_steps,self.dim_]) xs[:,self.GOAL] = xs_goal xds[:,self.GOAL] = xds_goal xs[:,self.PHASE] = xs_phase xds[:,self.PHASE] = xds_phase xs[:,self.GATING] = xs_gating xds[:,self.GATING] = xds_gating # THE REST CANNOT BE DONE ANALYTICALLY # Reset the dynamical system, and get the first state damping = self.spring_system_.damping_coefficient_ localspring_system = SpringDamperSystem(self.tau_,self.initial_state_,self.attractor_state_,damping) # Set first attractor state localspring_system.set_attractor_state(xs_goal[0,:]) # Start integrating spring damper system (x_spring, xd_spring) = localspring_system.integrateStart() # For convenience SPRING = self.SPRING SPRING_Y = self.SPRING_Y SPRING_Z = self.SPRING_Z t0 = 0 xs[t0,SPRING] = x_spring xds[t0,SPRING] = xd_spring # Add forcing term to the acceleration of the spring state xds[0,SPRING_Z] = xds[0,SPRING_Z] + forcing_terms[t0,:]/self.tau_ for tt in range(1,n_time_steps): dt = ts[tt]-ts[tt-1] # Euler integration xs[tt,SPRING] = xs[tt-1,SPRING] + dt*xds[tt-1,SPRING] # Set the attractor state of the spring system localspring_system.set_attractor_state(xs[tt,self.GOAL]) # Integrate spring damper system xds[tt,SPRING] = localspring_system.differentialEquation(xs[tt,SPRING]) # If necessary add a perturbation. May be useful for some off-line tests. #RowVectorXd perturbation = RowVectorXd::Constant(dim_orig(),0.0) #if (analytical_solution_perturber_!=NULL) # for (int i_dim=0 i_dim<dim_orig() i_dim++) # // Sample perturbation from a normal Gaussian distribution # perturbation(i_dim) = (*analytical_solution_perturber_)() # Add forcing term to the acceleration of the spring state xds[tt,SPRING_Z] = xds[tt,SPRING_Z] + forcing_terms[tt,:]/self.tau_ #+ perturbation # Compute y component from z xds[tt,SPRING_Y] = xs[tt,SPRING_Z]/self.tau_ return ( xs, xds, forcing_terms, fa_outputs) def train(self,trajectory): # Set tau, initial_state and attractor_state from the trajectory self.set_tau(trajectory.ts_[-1]) self.set_initial_state(trajectory.ys_[0,:]) self.set_attractor_state(trajectory.ys_[-1,:]) # This needs to be computed for (optional) scaling of the forcing term. # Needs to be done BEFORE computeFunctionApproximatorInputsAndTargets self.trajectory_amplitudes_ = trajectory.getRangePerDim() (fa_input_phase, f_target) = self.computeFunctionApproximatorInputsAndTargets(trajectory) for dd in range(self.dim_orig_): fa_target = f_target[:,dd] self.function_approximators_[dd].train(fa_input_phase,fa_target) # Save the times steps on which the Dmp was trained. # This is just a convenience function to be able to call # analyticalSolution without the "ts" argument. self.ts_train_ = trajectory.ts_ def computeFunctionApproximatorInputsAndTargets(self,trajectory): n_time_steps = trajectory.ts_.size dim_data = trajectory.dim_ assert(self.dim_orig_==dim_data) (xs_ana,xds_ana,forcing_terms, fa_outputs) = self.analyticalSolution(trajectory.ts_) xs_goal = xs_ana[:,self.GOAL] xs_gating = xs_ana[:,self.GATING] xs_phase = xs_ana[:,self.PHASE] fa_inputs_phase = xs_phase # Get parameters from the spring-dampers system to compute inverse damping_coefficient = self.spring_system_.damping_coefficient_ spring_constant = self.spring_system_.spring_constant_ mass = self.spring_system_.mass_ # Usually, spring-damper system of the DMP should have mass==1 assert(mass==1.0) #Compute inverse tau = self.tau_ f_target = tau*tau*trajectory.ydds_ + (spring_constant*(trajectory.ys_-xs_goal) + damping_coefficient*tau*trajectory.yds_)/mass # Factor out gating term for dd in range(self.dim_orig_): f_target[:,dd] = f_target[:,dd]/np.squeeze(xs_gating) # Factor out scaling if (self.forcing_term_scaling_=="G_MINUS_Y0_SCALING"): g_minus_y0 = (self.attractor_state_-self.initial_state_) g_minus_y0_rep = np.tile(g_minus_y0,(n_time_steps,1)) f_target /= g_minus_y0_rep elif (self.forcing_term_scaling_=="AMPLITUDE_SCALING"): trajectory_amplitudes_rep = np.tile(self.trajectory_amplitudes_,(n_time_steps,1)) f_target /= trajectory_amplitudes_rep return (fa_inputs_phase, f_target) def statesAsTrajectory(self,ts, x_in, xd_in): # Left column is time return Trajectory(ts,x_in[:,self.SPRING_Y], xd_in[:,self.SPRING_Y], xd_in[:,self.SPRING_Z]/self.tau_) def getParameterVectorSelected(self): values = np.empty(0) for fa in self.function_approximators_: if fa.isTrained(): values = np.append(values,fa.getParameterVectorSelected()) return values def setParameterVectorSelected(self,values): size = self.getParameterVectorSelectedSize() assert(len(values)==size) offset = 0 for fa in self.function_approximators_: if fa.isTrained(): cur_size = fa.getParameterVectorSelectedSize() cur_values = values[offset:offset+cur_size] fa.setParameterVectorSelected(cur_values) offset += cur_size def getParameterVectorSelectedSize(self): size = 0 for fa in self.function_approximators_: if fa.isTrained(): size += fa.getParameterVectorSelectedSize() return size def set_initial_state(self,initial_state): assert(initial_state.size==self.dim_orig_) super(Dmp,self).set_initial_state(initial_state); # Set value in all relevant subsystems also self.spring_system_.set_initial_state(initial_state); if self.goal_system_: self.goal_system_.set_initial_state(initial_state); def set_attractor_state(self,attractor_state): assert(attractor_state.size==self.dim_orig_) super(Dmp,self).set_attractor_state(attractor_state); # Set value in all relevant subsystems also if self.goal_system_: self.goal_system_.set_attractor_state(attractor_state);