示例#1
0
 def generate_path(self, task):
     self.path_list = []
     for path_index in range(self.path_num):
         ref = ReferencePath(task)
         ref.set_path(path_index)
         self.path_list.append(ref)
     return self.path_list
示例#2
0
    def construct_ref_path(self, task, state, v_light):
        x, y, phi = state[3], state[4], state[5] / 180 * pi
        state = [x, y, phi]

        # The total trajectory consists of three different parts.
        def traj_start_straight(path_index, state):
            if len(self.feature_points[path_index]) == len(self.feature_points_all[path_index]) and state[1] < -CROSSROAD_SIZE / 2:
                start_line_y = np.linspace(state[1], -CROSSROAD_SIZE / 2, int(abs(state[1]-(-CROSSROAD_SIZE / 2))) * meter_pointnum_ratio, dtype=np.float32)[:-1]
                start_line_x = np.linspace(state[0], LANE_WIDTH / 2, int(abs(state[1]-(-CROSSROAD_SIZE / 2))) * meter_pointnum_ratio, dtype=np.float32)[:-1]
            else:
                start_line_x, start_line_y = [], []
            return start_line_x, start_line_y

        def traj_cross(path_index, state):
            if len(self.feature_points[path_index]) == 4:     # the vehicle has not passed into the crossing
                feature_point1, feature_point2 = self.feature_points[path_index][0], self.feature_points[path_index][1]
                self.L0, self.L3 = 15. * np.ones([self.path_num]), 15. * np.ones([self.path_num])
                cross_x, cross_y = self.trajectory_planning(feature_point1, feature_point2, feature_point2, self.L0[path_index], self.L3[path_index])

            elif len(self.feature_points[path_index]) == 1:
                feature_point1 = self.feature_points[path_index][0]
                cross_x, cross_y = self.trajectory_planning(state, feature_point1, feature_point1, self.L0[path_index],
                                                            self.L3[path_index])
            else:
                feature_point1, feature_point2 = self.feature_points[path_index][0], self.feature_points[path_index][1]
                cross_x, cross_y = self.trajectory_planning(state, feature_point1, feature_point2, self.L0[path_index],
                                                            self.L3[path_index])
            return cross_x, cross_y

        def traj_end_straight(path_index):
            if len(self.feature_points[path_index]) >= 3:    # the vehicle has not arrived
                end_line_y = self.end_offsets[path_index] * np.ones(shape=(sl * meter_pointnum_ratio), dtype=np.float32)[1:]
                end_line_x = np.linspace(-CROSSROAD_SIZE / 2, -sl - CROSSROAD_SIZE/2, sl * meter_pointnum_ratio, dtype=np.float32)[1:]
            elif len(self.feature_points[path_index]) == 2:  # the vehicle has passed the intersection
                end_line_y = self.end_offsets[path_index] * np.ones(shape=((sl - CROSSROAD_SIZE//2) * meter_pointnum_ratio), dtype=np.float32)[1:]
                end_line_x = np.linspace(-CROSSROAD_SIZE, -sl - CROSSROAD_SIZE / 2, (sl - CROSSROAD_SIZE//2) * meter_pointnum_ratio, dtype=np.float32)[1:]
            else:                                           # the vehicle has arrived
                end_line_x, end_line_y = [], []
            return end_line_x, end_line_y

        self.path_list = []
        for path_index in range(0, self.path_num):
            start_line_x, start_line_y = traj_start_straight(path_index, state)
            cross_x, cross_y = traj_cross(path_index, state)
            end_line_x, end_line_y = traj_end_straight(path_index)

            total_x, total_y = np.append(start_line_x, np.append(cross_x, end_line_x)), np.append(start_line_y, np.append(cross_y, end_line_y))
            total_x = total_x.astype(np.float32)
            total_y = total_y.astype(np.float32)

            xs_1, ys_1 = total_x[:-1], total_y[:-1]
            xs_2, ys_2 = total_x[1:], total_y[1:]
            phis_1 = np.arctan2(ys_2 - ys_1, xs_2 - xs_1) * 180 / pi
            planed_trj = xs_1, ys_1, phis_1

            ref = ReferencePath(task)
            ref.set_path(self.mode, path_index=path_index, path=planed_trj)
            self.path_list.append(ref)
示例#3
0
 def generate_traj(self, task, state=None, v_light=0):
     """"generate reference trajectory in real time"""
     if self.mode == 'static_traj':
         self.path_list = []
         for path_index in range(self.path_num):
             ref = ReferencePath(task)
             ref.set_path(path_index)
             self.path_list.append(ref)
     else:
         self._future_point_choice(state, task)
         self.construct_ref_path(task, state, v_light)
     return self.path_list, self._future_points_init(task)