示例#1
0
 def __init__(self, pc, dim_asp, dim_opi):
     self.pc = pc.add_subcollection()
     self.dim_asp = dim_asp
     self.dim_opi = dim_opi
     self._W_A = self.pc.add_parameters((2*self.dim_opi, 2*self.dim_asp), init=dy.UniformInitializer(0.2))
     self._W_O = self.pc.add_parameters((2*self.dim_opi, 2*self.dim_opi), init=dy.UniformInitializer(0.2))
     self._b = self.pc.add_parameters((2 * self.dim_opi,), init=dy.ConstInitializer(0.0))
示例#2
0
 def __init__(self, pc, n_in, n_out, dropout_rate):
     self.n_in = n_in
     self.n_out = n_out
     self.dropout_rate = dropout_rate
     self.pc = pc.add_subcollection()
     
     self._v = self.pc.add_parameters((self.n_out,), init=dy.UniformInitializer(0.2))
     self._W1 = self.pc.add_parameters((self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
     self._W2 = self.pc.add_parameters((self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
     self._bd = self.pc.add_parameters((self.n_out), init=dy.ConstInitializer(0.0))
示例#3
0
    def __init__(self, pc, n_steps, n_in):
        """

        :param n_steps: number of steps in truncated self-attention
        :param n_in:
        """
        self.pc = pc.add_subcollection()
        self.n_steps = n_steps
        self.n_in = n_in
        self._v = self.pc.add_parameters((self.n_in,), init=dy.UniformInitializer(0.2))
        self._W1 = self.pc.add_parameters((self.n_in, self.n_in), init=dy.UniformInitializer(0.2))
        self._W2 = self.pc.add_parameters((self.n_in, self.n_in), init=dy.UniformInitializer(0.2))
        self._W3 = self.pc.add_parameters((self.n_in, self.n_in), init=dy.UniformInitializer(0.2))
示例#4
0
    def __init__(self, pc, n_in, n_out, dropout_rate):
        self.n_in = n_in
        self.n_out = n_out
        self.dropout_rate = dropout_rate
        self.pc = pc.add_subcollection()
        
        self._WC = self.pc.add_parameters((self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
        self._WP = self.pc.add_parameters((self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
        self._WR = self.pc.add_parameters((self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
        self._UP = self.pc.add_parameters((self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
        self._UR = self.pc.add_parameters((self.n_out, self.n_out), init=dy.UniformInitializer(0.2))

        self._bc = self.pc.add_parameters((self.n_out), init=dy.ConstInitializer(0.0))
        self._bp = self.pc.add_parameters((self.n_out), init=dy.ConstInitializer(0.0))
        self._br = self.pc.add_parameters((self.n_out), init=dy.ConstInitializer(0.0))
示例#5
0
  def __init__(self):
    self.model = dy.Model()

    # Embeds the five states at each square: empty, blocked, occupied by agent,
    # goal, and * (occupied by both agent and goal).
    self.emb_env_mat = self.model.add_lookup_parameters((5, BLOCK_EMB_SIZE))
    self.num_spots = env.WORLD_SIZE * env.WORLD_SIZE

    tot_size = BLOCK_EMB_SIZE * self.num_spots

    self.l1_weights = self.model.add_parameters((tot_size,
                                                 int(tot_size / 2)),
                                                 initializer = dy.UniformInitializer(0.1))
    self.l1_biases = self.model.add_parameters((int(tot_size / 2))),
                                                 initializer = dy.UniformInitializer(0.1)
示例#6
0
 def initializer(self, dim, is_lookup=False, num_shared=1):
     if is_lookup:
         fan_in = dim[0]
     else:
         fan_in = dim[-1]
     s = self.scale * np.sqrt(3. / fan_in)
     return dy.UniformInitializer(s)
 def __init__(self, nl, di, dh, du, vs, pc, dr=0.0, pre_embs=None):
     super(BiUserLSTMEncoder, self).__init__(nl, di, dh, du, vs, pc, dr, pre_embs)
     self.dim += dh
     # Backward encoder
     self.rev_lstm = dy.VanillaLSTMBuilder(self.nl, self.di, self.dh, self.pc)
     
     self.rev_Th_p = self.pc.add_parameters((dh, du), init=dy.UniformInitializer(1/np.sqrt(dh)), name='revTh')
示例#8
0
def LeCunUniform(fan_in, scale=1.0):
    """
  Reference: LeCun 98, Efficient Backprop
  http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
  """
    s = scale * np.sqrt(3. / fan_in)
    return dy.UniformInitializer(s)
示例#9
0
def Convolution1d(fsz, cmotsz, dsz, pc, strides=(1, 1, 1, 1), name="conv"):
    """1D Convolution.

    :param fsz: int, Size of conv filter.
    :param cmotsz: int, Size of conv output.
    :param dsz: int, Size of the input.
    :param pc: dy.ParameterCollection
    :param strides: Tuple[int, int, int, int]
    """
    conv_pc = pc.add_subcollection(name=name)
    fan_in = dsz * fsz
    fan_out = cmotsz * fsz
    # Pytorch and Dynet have a gain param that has suggested values based on
    # the nonlinearity type, this defaults to the one for relu atm.
    glorot_bounds = 0.5 * np.sqrt(6 / (fan_in + fan_out))
    weight = conv_pc.add_parameters((1, fsz, dsz, cmotsz),
                                    init=dy.UniformInitializer(glorot_bounds),
                                    name='weight')
    bias = conv_pc.add_parameters((cmotsz), name="bias")

    def conv(input_):
        """Perform the 1D conv.

        :param input: dy.Expression ((1, T, dsz), B)

        Returns:
            dy.Expression ((cmotsz,), B)
        """
        c = dy.conv2d_bias(input_, weight, bias, strides, is_valid=False)
        activation = dy.rectify(c)
        mot = dy.reshape(dy.max_dim(activation, 1), (cmotsz, ))
        return mot

    return conv
示例#10
0
 def evaluate(self, inputs, train=False):
     """
     Apply all MLP layers to concatenated input
     :param inputs: (key, vector) per feature type
     :param train: are we training now?
     :return: output vector of size self.output_dim
     """
     input_keys, inputs = list(map(list, zip(*list(inputs))))
     if self.input_keys:
         assert input_keys == self.input_keys, "Got:     %s\nBut expected input keys: %s" % (
             self.input_keys_str(
                 self.input_keys), self.input_keys_str(input_keys))
     else:
         self.input_keys = input_keys
     if self.gated:
         gates = self.params.get("gates")
         if gates is None:  # FIXME attention weights should not be just parameters, but based on biaffine product?
             gates = self.params["gates"] = self.model.add_parameters(
                 (len(inputs), self.gated), init=dy.UniformInitializer(1))
         input_dims = [i.dim()[0][0] for i in inputs]
         max_dim = max(input_dims)
         x = dy.concatenate_cols([
             dy.concatenate([i, dy.zeroes(max_dim - d)
                             ])  # Pad with zeros to get uniform dim
             if d < max_dim else i for i, d in zip(inputs, input_dims)
         ]) * gates
         # Possibly multiple "attention heads" -- concatenate outputs to one vector
         inputs = [dy.reshape(x, (x.dim()[0][0] * x.dim()[0][1], ))]
     x = dy.concatenate(inputs)
     assert len(
         x.dim()
         [0]) == 1, "Input should be a vector, but has dimension " + str(
             x.dim()[0])
     dim = x.dim()[0][0]
     if self.input_dim:
         assert dim == self.input_dim, "Input dim mismatch: %d != %d" % (
             dim, self.input_dim)
     else:
         self.init_params(dim)
     self.config.print(self, level=4)
     if self.total_layers:
         if self.weights is None:
             self.weights = [[
                 self.params[prefix + str(i)] for prefix in ("W", "b")
             ] for i in range(self.total_layers)]
             if self.weights[0][0].dim(
             )[0][1] < dim:  # number of columns in W0
                 self.weights[0][0] = dy.concatenate_cols(
                     [self.weights[0][0], self.params["W0+"]])
         for i, (W, b) in enumerate(self.weights):
             self.config.print(lambda: x.npvalue().tolist(), level=4)
             try:
                 if train and self.dropout:
                     x = dy.dropout(x, self.dropout)
                 x = self.activation()(W * x + b)
             except ValueError as e:
                 raise ValueError("Error in evaluating layer %d of %d" %
                                  (i + 1, self.total_layers)) from e
     self.config.print(lambda: x.npvalue().tolist(), level=4)
     return x
示例#11
0
    def __init__(self, pc, n_in, n_out, dropout_rate):
        """
        LSTM constructor
        :param pc: parameter collection
        :param n_in:
        :param n_out:
        :param dropout_rate: dropout rate
        """
        self.n_in = n_in
        self.n_out = n_out
        self.dropout_rate = dropout_rate
        self.pc = pc.add_subcollection()

        self._W = self.pc.add_parameters((4 * self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
        self._U = self.pc.add_parameters((4 * self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
        self._b = self.pc.add_parameters((4 * self.n_out), init=dy.ConstInitializer(0.0))
示例#12
0
 def __init__(self, pc, n_in, n_out, use_bias=False):
     self.pc = pc.add_subcollection()
     self.n_in = n_in
     self.n_out = n_out
     self.use_bias = use_bias
     self._W = self.pc.add_parameters((self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
     if self.use_bias:
         self._b = self.pc.add_parameters((self.n_out,), init=dy.ConstInitializer(0.0))
示例#13
0
    def __init__(self, input_dims, output_dims, model):
        self.input_dims = input_dims
        self.output_dims = output_dims
        self.model = model

        self.W_i = model.add_parameters(
            (output_dims, input_dims + output_dims),
            init=dynet.UniformInitializer(0.01),
        )
        self.b_i = model.add_parameters(
            (output_dims, ),
            init=dynet.ConstInitializer(0),
        )
        self.W_f = model.add_parameters(
            (output_dims, input_dims + output_dims),
            init=dynet.UniformInitializer(0.01),
        )
        self.b_f = model.add_parameters(
            (output_dims, ),
            init=dynet.ConstInitializer(0),
        )
        self.W_c = model.add_parameters(
            (output_dims, input_dims + output_dims),
            init=dynet.UniformInitializer(0.01),
        )
        self.b_c = model.add_parameters(
            (output_dims, ),
            init=dynet.ConstInitializer(0),
        )
        self.W_o = model.add_parameters(
            (output_dims, input_dims + output_dims),
            init=dynet.UniformInitializer(0.01),
        )
        self.b_o = model.add_parameters(
            (output_dims, ),
            init=dynet.ConstInitializer(0),
        )
        self.c0 = model.add_parameters(
            (output_dims, ),
            init=dynet.ConstInitializer(0),
        )

        self.W_params = [self.W_i, self.W_f, self.W_c, self.W_o]
        self.b_params = [self.b_i, self.b_f, self.b_c, self.b_o]
        self.params = self.W_params + self.b_params + [self.c0]
示例#14
0
    def _create_model(self):
        self.logger.info('Creating the model...')

        model = dy.ParameterCollection()

        # context gru encoders
        c_fwdRnn = dy.GRUBuilder(self.model_args["gru_layers"],
                                 self.model_args["gru_input_dim"],
                                 self.model_args["gru_hidden_dim"],
                                 model)
        c_bwdRnn = dy.GRUBuilder(self.model_args["gru_layers"],
                                 self.model_args["gru_input_dim"],
                                 self.model_args["gru_hidden_dim"],
                                 model)

        # question gru encoders
        q_fwdRnn = dy.GRUBuilder(self.model_args["gru_layers"],
                                 self.model_args["gru_input_dim"],
                                 self.model_args["gru_hidden_dim"],
                                 model)
        q_bwdRnn = dy.GRUBuilder(self.model_args["gru_layers"],
                                 self.model_args["gru_input_dim"],
                                 self.model_args["gru_hidden_dim"],
                                 model)

        # embedding parameter
        lookup_params = model.add_lookup_parameters((self.model_args["vocab_size"],
                                                     self.model_args["gru_input_dim"]),
                                                    dy.UniformInitializer(self.model_args["lookup_init_scale"]))

        unk_lookup_params = model.add_lookup_parameters((self.model_args["number_of_unks"],
                                                         self.model_args["gru_input_dim"]),
                                                        dy.UniformInitializer(self.model_args["lookup_init_scale"]))

        self.logger.info('Done creating the model')

        model_parameters = {"c_fwdRnn": c_fwdRnn,
                            "c_bwdRnn": c_bwdRnn,
                            "q_fwdRnn": q_fwdRnn,
                            "q_bwdRnn": q_bwdRnn,
                            "lookup_params": lookup_params,
                            "unk_lookup_params": unk_lookup_params}
        return model, model_parameters
示例#15
0
 def initializer(self,
                 dim,
                 is_lookup: bool = False,
                 num_shared: numbers.Integral = 1) -> dy.UniformInitializer:
     if is_lookup:
         fan_in = dim[0]
     else:
         fan_in = dim[-1]
     s = self.scale * np.sqrt(3. / fan_in)
     return dy.UniformInitializer(s)
示例#16
0
文件: linear.py 项目: chrikoehn/antu
    def __init__(self,
                 model: dy.ParameterCollection,
                 in_dim: int,
                 out_dim: int,
                 init: dy.PyInitializer = None,
                 bias: bool = True):

        pc = model.add_subcollection()
        if not init: init = dy.UniformInitializer(math.sqrt(in_dim))
        self.W = pc.add_parameters((out_dim, in_dim), init=init)
        if bias: self.b = pc.add_parameters((out_dim, ), init=init)
        self.pc = pc
        self.bias = bias
示例#17
0
    def __init__(
        self,
        bigrams_size,
        unigrams_size,
        bigrams_dims,
        unigrams_dims,
        lstm_units,
        hidden_units,
        label_size,
        span_nums,
        droprate=0,
    ):

        self.bigrams_size = bigrams_size
        self.bigrams_dims = bigrams_dims
        self.unigrams_dims = unigrams_dims
        self.unigrams_size = unigrams_size
        self.lstm_units = lstm_units
        self.hidden_units = hidden_units
        self.span_nums = span_nums
        self.droprate = droprate
        self.label_size = label_size

        self.model = dynet.Model()
        self.trainer = dynet.AdadeltaTrainer(self.model, eps=1e-7, rho=0.99)
        random.seed(1)

        self.activation = dynet.rectify

        self.bigram_embed = self.model.add_lookup_parameters(
            (self.bigrams_size, self.bigrams_dims), )
        self.unigram_embed = self.model.add_lookup_parameters(
            (self.unigrams_size, self.unigrams_dims), )
        self.fwd_lstm1 = LSTM(self.bigrams_dims + self.unigrams_dims,
                              self.lstm_units, self.model)
        self.back_lstm1 = LSTM(self.bigrams_dims + self.unigrams_dims,
                               self.lstm_units, self.model)

        self.fwd_lstm2 = LSTM(2 * self.lstm_units, self.lstm_units, self.model)
        self.back_lstm2 = LSTM(2 * self.lstm_units, self.lstm_units,
                               self.model)

        self.p_hidden_W = self.model.add_parameters(
            (self.hidden_units, 2 * self.span_nums * self.lstm_units),
            dynet.UniformInitializer(0.01))
        self.p_hidden_b = self.model.add_parameters((self.hidden_units, ),
                                                    dynet.ConstInitializer(0))
        self.p_output_W = self.model.add_parameters(
            (self.label_size, self.hidden_units), dynet.ConstInitializer(0))
        self.p_output_b = self.model.add_parameters((self.label_size, ),
                                                    dynet.ConstInitializer(0))
示例#18
0
    def __init__(self, pc, n_in, n_out, n_steps, dropout_rate):
        self.pc = pc.add_subcollection()
        self.n_in = n_in
        self.n_out = n_out
        self.n_steps = n_steps
        self.dropout_rate = dropout_rate

        # parameters for recurrent step
        self._W_xr = self.pc.add_parameters((self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
        self._W_hr = self.pc.add_parameters((self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
        self._br = self.pc.add_parameters((self.n_out,), init=dy.ConstInitializer(0.0))
        self._W_xz = self.pc.add_parameters((self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
        self._W_hz = self.pc.add_parameters((self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
        self._bz = self.pc.add_parameters((self.n_out,), init=dy.ConstInitializer(0.0))
        self._W_xh = self.pc.add_parameters((self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
        self._W_hh = self.pc.add_parameters((self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
        self._bh = self.pc.add_parameters((self.n_out,), init=dy.ConstInitializer(0.0))

        # for attention modeling
        attention_scale = 1.0 / math.sqrt(1.0)  # actually the value is 0.0
        self._u = self.pc.add_parameters((self.n_out,), init=dy.UniformInitializer(attention_scale))
        self._W_h = self.pc.add_parameters((self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
        self._W_x = self.pc.add_parameters((self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
        self._W_htilde = self.pc.add_parameters((self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
示例#19
0
    def __init__(self,
                 model,
                 embedding_size,
                 name="",
                 initializer=dy.UniformInitializer(0.1),
                 vocabulary=None,
                 num_tokens=-1,
                 anonymizer=None):
        if vocabulary:
            assert num_tokens < 0, "Specified a vocabulary but also set number of tokens to " + \
                str(num_tokens)
            self.in_vocabulary = lambda token: token in vocabulary.tokens
            self.vocab_token_lookup = lambda token: vocabulary.token_to_id(token)
            self.unknown_token_id = vocabulary.token_to_id(
                vocabulary_handler.UNK_TOK)
            self.vocabulary_size = len(vocabulary)
        else:
            def check_vocab(index):
                """ Makes sure the index is in the vocabulary."""
                assert index < num_tokens, "Passed token ID " + \
                    str(index) + "; expecting something less than " + str(num_tokens)
                return index < num_tokens
            self.in_vocabulary = check_vocab
            self.vocab_token_lookup = lambda x: x
            self.unknown_token_id = num_tokens  # Deliberately throws an error here,
            # But should crash before this
            self.vocabulary_size = num_tokens

        self.anonymizer = anonymizer

        emb_name = name + "-tokens"
        print("Creating token embedder called " + emb_name + " of size " +
              str(self.vocabulary_size) + " x " + str(embedding_size))
        self.token_embedding_matrix = model.add_lookup_parameters(
            (self.vocabulary_size, embedding_size), init=initializer, name=emb_name)

        if self.anonymizer:
            emb_name = name + "-entities"
            entity_size = len(self.anonymizer.entity_types)
            print(
                "Creating entity embedder called " +
                emb_name +
                " of size " +
                str(entity_size) +
                " x " +
                str(embedding_size))
            self.entity_embedding_matrix = model.add_lookup_parameters(
                (entity_size, embedding_size), init=initializer, name=emb_name)
示例#20
0
    def __init__(self, pc, n_chars, dim_char, pretrained_embeddings=None):
        """

        :param pc: parameter collection
        :param n_chars: number of distinct characters
        :param dim_char: dimension of character embedding
        """
        self.pc = pc.add_subcollection()
        self.n_chars = n_chars
        self.dim_char = dim_char
        # network parameters
        #self.W = self.pc.add_lookup_parameters((self.n_chars, self.dim_char),
        #                                       init='uniform', scale=np.sqrt(3.0 / self.dim_char))
        self.W = self.pc.add_lookup_parameters((self.n_chars, self.dim_char),
                                               init=dy.UniformInitializer(np.sqrt(3.0 / self.dim_char)))
        if pretrained_embeddings is not None:
            print("Use pre-trained character embeddings...")
            self.W.init_from_array(pretrained_embeddings)
示例#21
0
 def initializer(self, dim, is_lookup=False, num_shared=1):
     """
 Args:
   dim (tuple): dimensions of parameter tensor
   is_lookup (bool): Whether the parameter is a lookup parameter
   num_shared (int): If > 1, treat the first dimension as spanning multiple matrices, each of which is initialized individually
 Returns:
   a dynet initializer object
 """
     gain = getattr(self, "gain", 1.0)
     if num_shared == 1:
         return dy.GlorotInitializer(gain=gain, is_lookup=is_lookup)
     else:
         per_param_dims = list(dim)
         assert per_param_dims[0] % num_shared == 0
         per_param_dims[0] //= num_shared
         if is_lookup: per_param_dims = per_param_dims[:-1]
         scale = gain * math.sqrt(3.0 * len(per_param_dims)) / math.sqrt(
             sum(per_param_dims))
         return dy.UniformInitializer(scale=scale)
示例#22
0
    def __init__(self, pc, n_in, n_out, use_bias=False, nonlinear=None):
        """

        :param pc: parameter collection to hold the parameters
        :param n_in: input dimension
        :param n_out: output dimension
        :param use_bias: if add bias or not, default NOT
        :param nonlinear: non-linear activation function
        """
        # create a sub-collection of the current parameters collection and returns it
        # the returned sub-collection is simply a ParameterCollection object tied to a parent collection
        self.pc = pc.add_subcollection()
        self.n_in = n_in
        self.n_out = n_out
        self.use_bias = use_bias
        self.nonlinear = nonlinear
        # add a parameter to the ParameterCollection with a given initializer
        self._W = self.pc.add_parameters((self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
        if self.use_bias:
            self._b = self.pc.add_parameters((self.n_out,), init=dy.ConstInitializer(0.0))
示例#23
0
 def __init__(
     self,
     model,
     char_vocab,
     embed_size=30,
     window_size=3,
     filter_size=30,
     dropout=0.33,
 ):
     self.vocab = char_vocab
     self.model = model
     self.char_embeds = self.model.add_lookup_parameters(
         (len(char_vocab), 1, 1, embed_size),
         init=dy.UniformInitializer(np.sqrt(3.0 / embed_size)),
     )
     self.filter_size = filter_size
     self.W_cnn = self.model.add_parameters(
         (1, window_size, embed_size, filter_size))
     self.b_cnn = self.model.add_parameters((filter_size))
     self.b_cnn.zero()
     self.dropout = dropout
示例#24
0
def Convolution1d(fsz, cmotsz, dsz, pc, strides=(1, 1, 1, 1), name="conv"):
    """1D Convolution.

    :param fsz: int, Size of conv filter.
    :param cmotsz: int, Size of conv output.
    :param dsz: int, Size of the input.
    :param pc: dy.ParameterCollection
    :param strides: Tuple[int, int, int, int]
    """
    conv_pc = pc.add_subcollection(name=name)
    fan_in = dsz * fsz
    fan_out = cmotsz * fsz
    # Pytorch and Dynet have a gain param that has suggested values based on
    # the nonlinearity type, this defaults to the one for relu atm.
    glorot_bounds = 0.5 * np.sqrt(6.0 / (fan_in + fan_out))
    weight = conv_pc.add_parameters(
        (1, fsz, dsz, cmotsz),
        init=dy.UniformInitializer(glorot_bounds),
        name='weight'
    )
    bias = conv_pc.add_parameters((cmotsz), name="bias")

    def conv(input_):
        """Perform the 1D conv.

        :param input: dy.Expression ((1, T, dsz), B)

        Returns:
            dy.Expression ((cmotsz,), B)
        """
        c = dy.conv2d_bias(input_, weight, bias, strides, is_valid=False)
        activation = dy.rectify(c)
        # dy.max_dim(x, d=0) is currently slow (see https://github.com/clab/dynet/issues/1011)
        # So we do the max using max pooling instead.
        ((_, seq_len, _), _) = activation.dim()
        pooled = dy.maxpooling2d(activation, [1, seq_len, 1], strides)
        mot = dy.reshape(pooled, (cmotsz,))
        return mot

    return conv
示例#25
0
def add_params(model, size, name=""):
    """ Adds parameters to the model.

    Inputs:
        model (dy.ParameterCollection): The parameter collection for the model.
        size (tuple of int): The size to create.
        name (str, optional): The name of the parameters.
    """
    if len(size) == 1:
        print("vector " + name + ": " +
              str(size[0]) + "; uniform in [-0.1, 0.1]")
    else:
        print("matrix " +
              name +
              ": " +
              str(size[0]) +
              " x " +
              str(size[1]) +
              "; uniform in [-0.1, 0.1]")
    return model.add_parameters(size,
                                init=dy.UniformInitializer(0.1),
                                name=name)
示例#26
0
    def __init__(self, pc, n_in, n_out, n_steps, dropout_rate):
        self.pc = pc.add_subcollection()
        self.n_in = n_in
        self.n_out = n_out
        self.dropout_rate = dropout_rate

        # steps in truncated attention
        self.n_steps = n_steps

        self._W = self.pc.add_parameters((4*self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
        self._U = self.pc.add_parameters((4*self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
        self._b = self.pc.add_parameters((4*self.n_out), init=dy.ConstInitializer(0.0))

        attention_scale = 1.0 / math.sqrt(1.0) # actually the value is 0.0
        self._u = self.pc.add_parameters((self.n_out,), init=dy.UniformInitializer(attention_scale))

        self._W_h = self.pc.add_parameters((self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
        self._W_x = self.pc.add_parameters((self.n_out, self.n_in), init=dy.UniformInitializer(0.2))
        self._W_htilde = self.pc.add_parameters((self.n_out, self.n_out), init=dy.UniformInitializer(0.2))
import dynet as dy
import json
import numpy
import random
import sys
from tqdm import tqdm

_initializer = dy.UniformInitializer(0.1)
_zero_initializer = dy.ConstInitializer(0.0)


class Ensembler:
    '''
    Learns to choose from outputs of two independent systems
    with differing sources of information
    '''

    def __init__(self, irregularity_model_file, vocab, args):
        self.vocab = vocab
        self.epochs = args['epochs'] if 'epochs' in args else 10
        self.decay_rate = args['decay_rate'] if 'decay_rate' in args else .5
        self.lr = args['lr'] if 'lr' in args else 0.005
        self.batch_size = args['batch-size'] if 'batch-size' in args else 1
        self.choices = args['num-choices'] if 'num-choices' in args else 2
        self.model_file = irregularity_model_file

        self.pc = dy.ParameterCollection()
        self.trainer = dy.AdamTrainer(self.pc, alpha=self.lr)

    def define_params(self, observations):
        self.param_dict = {}
示例#28
0
    def __init__(
        self,
        word_count,
        tag_count,
        word_dims,
        tag_dims,
        lstm_units,
        hidden_units,
        struct_out,
        label_out,
        droprate=0,
        struct_spans=4,
        label_spans=3,
    ):

        self.word_count = word_count
        self.tag_count = tag_count
        self.word_dims = word_dims
        self.tag_dims = tag_dims
        self.lstm_units = lstm_units
        self.hidden_units = hidden_units
        self.struct_out = struct_out
        self.label_out = label_out

        self.droprate = droprate

        self.model = dynet.Model()

        self.trainer = dynet.AdadeltaTrainer(self.model, eps=1e-7, rho=0.99)
        random.seed(1)

        self.activation = dynet.rectify

        self.word_embed = self.model.add_lookup_parameters(
            (word_count, word_dims), )
        self.tag_embed = self.model.add_lookup_parameters(
            (tag_count, tag_dims), )

        self.fwd_lstm1 = LSTM(word_dims + tag_dims, lstm_units, self.model)
        self.back_lstm1 = LSTM(word_dims + tag_dims, lstm_units, self.model)

        self.fwd_lstm2 = LSTM(2 * lstm_units, lstm_units, self.model)
        self.back_lstm2 = LSTM(2 * lstm_units, lstm_units, self.model)

        self.struct_hidden_W = self.model.add_parameters(
            (hidden_units, 4 * struct_spans * lstm_units),
            dynet.UniformInitializer(0.01),
        )
        self.struct_hidden_b = self.model.add_parameters(
            (hidden_units, ),
            dynet.ConstInitializer(0),
        )
        self.struct_output_W = self.model.add_parameters(
            (struct_out, hidden_units),
            dynet.ConstInitializer(0),
        )
        self.struct_output_b = self.model.add_parameters(
            (struct_out, ),
            dynet.ConstInitializer(0),
        )

        self.label_hidden_W = self.model.add_parameters(
            (hidden_units, 4 * label_spans * lstm_units),
            dynet.UniformInitializer(0.01),
        )
        self.label_hidden_b = self.model.add_parameters(
            (hidden_units, ),
            dynet.ConstInitializer(0),
        )
        self.label_output_W = self.model.add_parameters(
            (label_out, hidden_units),
            dynet.ConstInitializer(0),
        )
        self.label_output_b = self.model.add_parameters(
            (label_out, ),
            dynet.ConstInitializer(0),
        )
示例#29
0
from tupa.features.feature_params import MISSING_VALUE

TRAINERS = {
    "sgd": (dy.SimpleSGDTrainer, "e0"),
    "cyclic": (dy.CyclicalSGDTrainer, "e0_min"),
    "momentum": (dy.MomentumSGDTrainer, "e0"),
    "adagrad": (dy.AdagradTrainer, "e0"),
    "adadelta": (dy.AdadeltaTrainer, None),
    "rmsprop": (dy.RMSPropTrainer, "e0"),
    "adam": (partial(dy.AdamTrainer, beta_2=0.9), "alpha"),
}

INITIALIZERS = {
    "glorot_uniform": dy.GlorotInitializer(),
    "normal": dy.NormalInitializer(),
    "uniform": dy.UniformInitializer(1),
    "const": dy.ConstInitializer(0),
}

ACTIVATIONS = {
    "square": dy.square,
    "cube": dy.cube,
    "tanh": dy.tanh,
    "sigmoid": dy.logistic,
    "relu": dy.rectify,
}


class NeuralNetwork(Classifier):
    """
    Neural network to be used by the parser for action classification. Uses dense features.
示例#30
0
 def initializer(self,
                 dim,
                 is_lookup: bool = False,
                 num_shared: numbers.Integral = 1) -> dy.UniformInitializer:
     return dy.UniformInitializer(scale=self.scale)