示例#1
0
def main(argv=None):
    os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu

    print("-- evaluating: on {} pairs from {}/{}".format(
        FLAGS.num, FLAGS.dataset, FLAGS.variant))

    default_config = config_dict()
    dirs = default_config['dirs']

    if FLAGS.dataset == 'kitti':
        data = KITTIData(dirs['data'], development=True)
        data_input = KITTIInput(data,
                                batch_size=1,
                                normalize=False,
                                dims=(384, 1280))
        inputs = getattr(data_input, 'input_' + FLAGS.variant)()
    elif FLAGS.dataset == 'nao':
        data = NaoData(dirs['data'], development=True)
        data_input = NaoInput(data,
                              batch_size=1,
                              normalize=False,
                              dir_name=FLAGS.directory,
                              dims=(192, 256))
    elif FLAGS.dataset == 'chairs':
        data = ChairsData(dirs['data'], development=True)
        data_input = ChairsInput(data,
                                 batch_size=1,
                                 normalize=False,
                                 dims=(384, 512))
        if FLAGS.variant == 'test_2015' and FLAGS.num == -1:
            FLAGS.num = 200
        elif FLAGS.variant == 'test_2012' and FLAGS.num == -1:
            FLAGS.num = 195
    elif FLAGS.dataset == 'sintel':
        data = SintelData(dirs['data'], development=True)
        data_input = SintelInput(data,
                                 batch_size=1,
                                 normalize=False,
                                 dims=(512, 1024))
    if FLAGS.variant in ['test_clean', 'test_final'] and FLAGS.num == -1:
        FLAGS.num = 552
    elif FLAGS.dataset == 'mdb':
        data = MiddleburyData(dirs['data'], development=True)
        data_input = MiddleburyInput(data,
                                     batch_size=1,
                                     normalize=False,
                                     dims=(512, 640))
        if FLAGS.variant == 'test' and FLAGS.num == -1:
            FLAGS.num = 12

    input_fn = getattr(data_input, 'input_' + FLAGS.variant)

    results = []
    for name in FLAGS.ex.split(','):
        result, image_names = _evaluate_experiment(name, input_fn, data_input)
        results.append(result)

    display(results, image_names)
示例#2
0
def _evaluate_experiment(name, input_fn, data_input):
    normalize_fn = data_input._normalize_image
    resized_h = data_input.dims[0]
    resized_w = data_input.dims[1]

    current_config = config_dict('../config.ini')
    exp_dir = os.path.join(current_config['dirs']['log'], 'ex', name)
    config_path = os.path.join(exp_dir, 'config.ini')
    if not os.path.isfile(config_path):
        config_path = '../config.ini'
    if not os.path.isdir(exp_dir) or not tf.train.get_checkpoint_state(
            exp_dir):
        exp_dir = os.path.join(current_config['dirs']['checkpoints'], name)
    config = config_dict(config_path)
    params = config['train']
    convert_input_strings(params, config_dict('../config.ini')['dirs'])
    dataset_params_name = 'train_' + FLAGS.dataset
    if dataset_params_name in config:
        params.update(config[dataset_params_name])
    ckpt = tf.train.get_checkpoint_state(exp_dir)
    if not ckpt:
        raise RuntimeError("Error: experiment must contain a checkpoint")
    ckpt_path = exp_dir + "/" + os.path.basename(ckpt.model_checkpoint_path)

    with tf.Graph().as_default():  #, tf.device('gpu:' + FLAGS.gpu):
        inputs = input_fn()
        im1, im2, input_shape = inputs[:3]
        truth = inputs[3:]

        height, width, _ = tf.unstack(tf.squeeze(input_shape), num=3, axis=0)
        im1 = resize_input(im1, height, width, resized_h, resized_w)
        im2 = resize_input(im2, height, width, resized_h,
                           resized_w)  # TODO adapt train.py

        _, flow, flow_bw = unsupervised_loss(
            (im1, im2),
            normalization=data_input.get_normalization(),
            params=params,
            augment=False,
            return_flow=True)

        im1 = resize_output(im1, height, width, 3)
        im2 = resize_output(im2, height, width, 3)
        flow = resize_output_flow(flow, height, width, 2)
        flow_bw = resize_output_flow(flow_bw, height, width, 2)

        flow_fw_int16 = flow_to_int16(flow)
        flow_bw_int16 = flow_to_int16(flow_bw)

        im1_pred = image_warp(im2, flow)
        im1_diff = tf.abs(im1 - im1_pred)
        #im2_diff = tf.abs(im1 - im2)

        #flow_bw_warped = image_warp(flow_bw, flow)

        if len(truth) == 4:
            flow_occ, mask_occ, flow_noc, mask_noc = truth
            flow_occ = resize_output_crop(flow_occ, height, width, 2)
            flow_noc = resize_output_crop(flow_noc, height, width, 2)
            mask_occ = resize_output_crop(mask_occ, height, width, 1)
            mask_noc = resize_output_crop(mask_noc, height, width, 1)

            #div = divergence(flow_occ)
            #div_bw = divergence(flow_bw)
            occ_pred = 1 - (1 - occlusion(flow, flow_bw)[0])
            def_pred = 1 - (1 - occlusion(flow, flow_bw)[1])
            disocc_pred = forward_warp(flow_bw) < DISOCC_THRESH
            disocc_fw_pred = forward_warp(flow) < DISOCC_THRESH
            image_slots = [
                ((im1 * 0.5 + im2 * 0.5) / 255, 'overlay'),
                (im1_diff / 255, 'brightness error'),
                #(im1 / 255, 'first image', 1, 0),
                #(im2 / 255, 'second image', 1, 0),
                #(im2_diff / 255, '|first - second|', 1, 2),
                (flow_to_color(flow), 'flow'),
                #(flow_to_color(flow_bw), 'flow bw prediction'),
                #(tf.image.rgb_to_grayscale(im1_diff) > 20, 'diff'),
                #(occ_pred, 'occ'),
                #(def_pred, 'disocc'),
                #(disocc_pred, 'reverse disocc'),
                #(disocc_fw_pred, 'forward disocc prediction'),
                #(div, 'div'),
                #(div < -2, 'neg div'),
                #(div > 5, 'pos div'),
                #(flow_to_color(flow_occ, mask_occ), 'flow truth'),
                (flow_error_image(flow, flow_occ, mask_occ, mask_noc),
                 'flow error')  #  (blue: correct, red: wrong, dark: occluded)
            ]

            # list of (scalar_op, title)
            scalar_slots = [
                (flow_error_avg(flow_noc, flow, mask_noc), 'EPE_noc'),
                (flow_error_avg(flow_occ, flow, mask_occ), 'EPE_all'),
                (outlier_pct(flow_noc, flow, mask_noc), 'outliers_noc'),
                (outlier_pct(flow_occ, flow, mask_occ), 'outliers_all')
            ]
        elif len(truth) == 2:
            flow_gt, mask = truth
            flow_gt = resize_output_crop(flow_gt, height, width, 2)
            mask = resize_output_crop(mask, height, width, 1)

            image_slots = [
                ((im1 * 0.5 + im2 * 0.5) / 255, 'overlay'),
                (im1_diff / 255, 'brightness error'),
                (flow_to_color(flow), 'flow'),
                (flow_to_color(flow_gt, mask), 'gt'),
            ]

            # list of (scalar_op, title)
            scalar_slots = [(flow_error_avg(flow_gt, flow, mask), 'EPE_all')]
        else:
            image_slots = [
                (im1 / 255, 'first image'),
                #(im1_pred / 255, 'warped second image', 0, 1),
                (im1_diff / 255, 'warp error'),
                #(im2 / 255, 'second image', 1, 0),
                #(im2_diff / 255, '|first - second|', 1, 2),
                (flow_to_color(flow), 'flow prediction')
            ]
            scalar_slots = []

        num_ims = len(image_slots)
        image_ops = [t[0] for t in image_slots]
        scalar_ops = [t[0] for t in scalar_slots]
        image_names = [t[1] for t in image_slots]
        scalar_names = [t[1] for t in scalar_slots]
        all_ops = image_ops + scalar_ops

        image_lists = []
        averages = np.zeros(len(scalar_ops))
        sess_config = tf.ConfigProto(allow_soft_placement=True)

        exp_out_dir = os.path.join('../out', name)
        if FLAGS.output_visual or FLAGS.output_benchmark:
            if os.path.isdir(exp_out_dir):
                shutil.rmtree(exp_out_dir)
            os.makedirs(exp_out_dir)
            shutil.copyfile(config_path, os.path.join(exp_out_dir,
                                                      'config.ini'))

        with tf.Session(config=sess_config) as sess:
            saver = tf.train.Saver(tf.global_variables())
            sess.run(tf.global_variables_initializer())
            sess.run(tf.local_variables_initializer())

            restore_networks(sess, params, ckpt, ckpt_path)

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)

            # TODO adjust for batch_size > 1 (also need to change image_lists appending)
            max_iter = FLAGS.num if FLAGS.num > 0 else None

            try:
                num_iters = 0
                while not coord.should_stop() and (max_iter is None
                                                   or num_iters != max_iter):
                    all_results = sess.run(
                        [flow, flow_bw, flow_fw_int16, flow_bw_int16] +
                        all_ops)
                    flow_fw_res, flow_bw_res, flow_fw_int16_res, flow_bw_int16_res = all_results[:
                                                                                                 4]
                    all_results = all_results[4:]
                    image_results = all_results[:num_ims]
                    scalar_results = all_results[num_ims:]
                    iterstr = str(num_iters).zfill(6)
                    if FLAGS.output_visual:
                        path_col = os.path.join(exp_out_dir,
                                                iterstr + '_flow.png')
                        path_overlay = os.path.join(exp_out_dir,
                                                    iterstr + '_img.png')
                        path_error = os.path.join(exp_out_dir,
                                                  iterstr + '_err.png')
                        write_rgb_png(image_results[0] * 255, path_overlay)
                        write_rgb_png(image_results[1] * 255, path_col)
                        write_rgb_png(image_results[2] * 255, path_error)
                    if FLAGS.output_benchmark:
                        path_fw = os.path.join(exp_out_dir, iterstr)
                        if FLAGS.output_png:
                            write_rgb_png(flow_fw_int16_res,
                                          path_fw + '_10.png',
                                          bitdepth=16)
                        else:
                            write_flo(flow_fw_res, path_fw + '_10.flo')
                        if FLAGS.output_backward:
                            path_fw = os.path.join(exp_out_dir,
                                                   iterstr + '_01.png')
                            write_rgb_png(flow_bw_int16_res,
                                          path_bw,
                                          bitdepth=16)
                    if num_iters < FLAGS.num_vis:
                        image_lists.append(image_results)
                    averages += scalar_results
                    if num_iters > 0:
                        sys.stdout.write('\r')
                    num_iters += 1
                    sys.stdout.write("-- evaluating '{}': {}/{}".format(
                        name, num_iters, max_iter))
                    sys.stdout.flush()
                    print()
            except tf.errors.OutOfRangeError:
                pass

            averages /= num_iters

            coord.request_stop()
            coord.join(threads)

    for t, avg in zip(scalar_slots, averages):
        _, scalar_name = t
        print("({}) {} = {}".format(name, scalar_name, avg))

    return image_lists, image_names