def costFunction(funcName, dim, x):
    """"""

    try:

        if dim > 1000:
            dim = 1000

        if funcName == "Shifted Sphere":
            return Shifted_Sphere(dim, x)
        elif funcName == "Shifted Schwefel":
            return Schwefel_Problem(dim, x)
        elif funcName == "Shifted Rosenbrock":
            return Shifted_Rosenbrock(dim, x)
        elif funcName == "Shifted Rastrigin":
            return Shifted_Rastrigin(dim, x)
        elif funcName == "Shifted Griewank":
            return Shifted_Griewank(dim, x)
        elif funcName == "Shifted Ackley":
            return Shifted_Ackley(dim, x)
        else:
            print("Error : Function number out of range\n")
            exit()

    except:
        EH()
示例#2
0
def plotPSO(Evaluation, funcName, fitness):
    try:
        #print(len(iterations))
        plt.figure(figsize=(10, 5))
        plt.grid('on')
        plt.rc('axes', axisbelow=True)
        plt.plot(Evaluation, "r-", label=funcName, lw=2)
        plt.xlabel("Iterations")
        plt.ylabel("Cost")
        plt.title('PSO - ' + funcName)
        #plt.annotate('local max', xy=(index, fitness_gbp_Position),arrowprops=dict(facecolor='black', shrink=0.05))
        best = [i for i, ev in enumerate(Evaluation) if ev == fitness]
        for i in best:
            plt.scatter(i,
                        fitness,
                        50,
                        marker='o',
                        facecolors='c',
                        edgecolors='k',
                        linewidths=1)
        plt.legend()
        plt.show()

    except:
        EH()
示例#3
0
def install_required_Packages():
    """
    Install the required PACKAGES
    :return: Nothing
    """

    try:
        # List all the required packages
        required_packages = [
            'matplotlib',
            'numpy',
        ]

        # Check and retrieve the installed packages info
        installed = subprocess.check_output(
            [sys.executable, '-m', 'pip', 'freeze'])
        # Split and strip the returned info to get the
        # installed packages names list
        installed_packages = [
            r.decode().split('==')[0] for r in installed.split()
        ]
        # Loop over the required packages
        for package in required_packages:
            # If the package is not in the installed packages
            if package not in installed_packages:
                # print informative message
                print(marks)
                print("Installing {}! Please wait ...")
                print(marks)
                # Send a check call and install the package
                subprocess.check_call(
                    [sys.executable, "-m", "pip", "install", package])
    except:
        EH()
def evaluations(funcName, bounds, Dimension):
    """
    Evaluation Function
    :param funcName: string
    :param bounds: list
    :param Dimension: int
    :return: None
    """
    try:

        # number of particles - Swarm Size
        particles = 100
        # Max number of iterations - Stopping Tolerance
        iterations = 500
        # for minimization problem
        # _initialFitness = float("inf")
        """ 
        w (Inertia Weight): is used to control the velocity:
        The acceleration coefficients: c1 (cognitive) and c2 (social)
        c1 (cognitive): expresses how much confidence a particle has in itself:
        c2 (social): expresses how much confidence a particle has in its neighbors
        """
        options = {'w': 0.85, 'c1': 1.0, 'c2': 1.5}

        print("\n Starting SPO ...")

        totalExecutionTime = 0
        solutions = []

        for i in range(1, 26):
            start = dt.datetime.now()
            pso = runPSO(funcName, bounds, Dimension, particles, iterations,
                         options)
            pso.run()
            solutions.append(pso)
            end = dt.datetime.now()
            totalExecutionTime += (end - start).seconds

        # Sort the resulted array:
        sortedList = sorted(solutions, key=lambda PSO: PSO.fitness)

        # Rotate through the results and choose the best one:
        print("\n-- Resulted Fitness:")
        for i, s in enumerate(sortedList):
            print(f"PSO {i + 1}, best fitness is {s.fitness}")

        print()
        bestPSO = sortedList[0]
        print("Best Solution: \n", bestPSO)

        print(
            f'Total Execution Time in seconds (repetitions: 25): {totalExecutionTime}'
        )

        # Plot evaluation
        plotPSO(bestPSO.Evaluation, funcName, bestPSO.fitness)

    except:
        EH()
def Shifted_Rastrigin(dim, x):
    """"""
    try:
        F = 0
        for i in range(dim):
            z = x[i] - rastrigin[i]
            F = F + (math.pow(z, 2) - 10 * np.cos(2 * np.pi * z) + 10)

        return F + f_bias[3]

    except:
        EH()
def Shifted_Sphere(dim, x):
    """"""
    try:
        F = 0  # objective function
        #print(len(sphere))
        for i in range(dim):
            F += math.pow(x[i] - sphere[i], 2)
        #print(F + f_bias[0])
        return F + f_bias[0]

    except:
        EH()
def Schwefel_Problem(dim, x):
    """"""
    try:
        F = np.abs(x[0])
        for i in range(1, dim):
            z = x[i] - schwefel[i]
            F = max(F, np.abs(z))

        return F + f_bias[1]

    except:
        EH()
示例#8
0
def repeatSA(repetition, Nodes):
    """"""
    try:
        print("Starting Annealing ...")
        _results = []
        _totalExecutionTime = 0
        # repeat Annealing few times and store the result:
        for i in range(1, repetition):
            start = dt.datetime.now()
            s = runAnnealing(Nodes)
            s.run()
            _results.append(s)
            end = dt.datetime.now()
            _totalExecutionTime += (end - start).seconds

        print(
            f'Total Execution Time in seconds (repetitions: 25): {_totalExecutionTime}'
        )

        # Sort the resulted array:
        sortedList = sorted(_results, key=lambda sa: sa.bestFitness)

        # Rotate through the results and choose the best one:
        print("\n-- Resulted Fitness:")
        for i, s in enumerate(sortedList):
            print(
                f"Simulated Annealing {i+1}, best fitness is {s.bestFitness}")

        # Print the best fitness details
        print()
        bestAnnealing = sortedList[0]
        print("Best Solution: \n", bestAnnealing)

        # List of City Coordinates:
        _points = bestAnnealing.coordinates
        #print(f"City Coordinates :\n {_points}")

        # List of Best Solution Path:
        _solution = bestAnnealing.solutions
        #print(f"Best Solution:\n {_solution}")

        # List of Best Fitted Distances:
        _fitness = bestAnnealing.fitnessList
        #print(f"Best Fitness:\n {_fitness}")

        initFit, bestFit = bestAnnealing.greedyFitness, bestAnnealing.bestFitness

        return _solution, _points, _fitness, initFit, bestFit

    except:
        EH()
示例#9
0
def runAnnealing(Nodes):
    try:
        # Run Annealing:
        s = sa(Nodes,
               initialTemperature=1e2,
               stoppingTemperature=1e-3,
               alpha=0.99999,
               stoppingIteration=500000)
        #s.run()

        return s

    except:
        EH()
def Shifted_Griewank(dim, x):
    """"""
    try:
        F1 = 0
        F2 = 1
        for i in range(dim):
            z = x[i] - griewank[i]
            F1 += (math.pow(z, 2) / 4000)
            F2 *= (np.cos(z / np.sqrt(i + 1)))

        F = F1 - F2 + 1 + f_bias[4]

        return F

    except:
        EH()
def Shifted_Rosenbrock(dim, x):
    """"""
    try:
        z = []
        F = 0
        for i in range(dim):
            z.append(x[i] - rosenbrock[i] + 1)

        for i in range(dim - 1):
            F = F + 100 *(math.pow(
                (math.pow(z[i], 2) - z[i + 1]), 2)) \
                + math.pow((z[i] - 1), 2)

        return F + f_bias[2]

    except:
        EH()
def Shifted_Ackley(dim, x):
    """"""
    try:
        Sum1 = 0
        Sum2 = 0
        for i in range(dim):
            z = x[i] - ackley[i]
            Sum1 += math.pow(z, 2)
            Sum2 += np.cos(2 * np.pi * z)

        F = -20 * np.exp(-0.2 * np.sqrt(Sum1 / dim)) \
            - np.exp(Sum2 / dim) + 20 + np.e + f_bias[5]

        return F

    except:
        EH()
def runPSO(funcName, bounds, Dimension, particles, iterations, options):
    """
    Run PSO Function
    :param funcName: string
    :param bounds: list
    :param Dimension: int
    :param particles: int
    :param iterations: int
    :param options: dict
    :return: obj
    """
    try:
        # Total execution time

        s = PSO(funcName, bounds, particles, iterations, Dimension, options)
        return s

    except:
        EH()
def values(fileName):
    """
    Values
    :param fileName: string
    :return: list[float]
    """
    try:
        _value = []

        with open(fileName, "r") as f:
            for line in f:
                stripped_line = line.split(",")
                for it in stripped_line:
                    if it != '\n':
                        _value.append(float(it))
        #print(len(_value))
        return _value

    except:
        EH()
示例#15
0
def coordinates(fileName):
    """
    Coordinates
    :param fileName: string
    :return: list[int, float, float]
    """
    try:
        city, latitude, longitude = [], [], []
        with open(fileName, "r") as f:
            for line in f.readlines():
                line = [float(x.strip()) for x in line.split(" ")]
                city.append(int(line[0]))
                latitude.append(float(line[1]))
                longitude.append(float(line[2]))

            cities = np.column_stack((city, latitude, longitude))
        return cities

    except:
        EH()
示例#16
0
def main():
    """ """
    try:
        print()
        print("1. Djibouti - 38 Cities.")
        print("2. Qatar - 194 Cities.\n")
        choice = int(input("Your choice? "))
        """
        Traveling salesman problem: is, given a set of cities, to find the shortest 
        path to visit all of the cities exactly once.
        """
        parser = argparse.ArgumentParser(description="Metaheuristics")

        fileList = ["data/dj38_tsp.txt", "data/qa194_tsp.txt"]
        regList = ["SA", "GA"]
        parser.add_argument("--filename",
                            choices=fileList,
                            default=fileList[choice - 1],
                            help='A string represents a dataset')

        args = parser.parse_args()

        # load and read data ----------------------------------------------------
        print("..." * 15)
        _Nodes = coordinates(args.filename)
        solutionObj, coordinatesObj, _fitnessObj, initFit, bestFit = repeatSA(
            6, _Nodes)

        # Visualize
        if choice == 1:
            animateTSP("Djibouti", solutionObj, coordinatesObj)
            plotLearning(_fitnessObj, initFit, bestFit)
        else:
            animateTSP("Qatar", solutionObj, coordinatesObj)
            plotLearning(_fitnessObj, initFit, bestFit)
    except:
        EH()
示例#17
0
def plotLearning(fitnessList, initFit, bestFit):
    """

    :param fitnessList: list[float]
    :param initFit: float
    :param bestFit: float
    :return: None
    """
    try:
        plt.figure(figsize=(10, 5))
        plt.grid('on')
        plt.rc('axes', axisbelow=True)
        plt.plot([i for i in range(len(fitnessList))], fitnessList)
        line_init = plt.axhline(y=initFit, color='r', linestyle='--')
        line_min = plt.axhline(y=bestFit, color='g', linestyle='--')

        plt.legend([line_init, line_min],
                   ['Greedy Initial Fitness', 'Optimized Annealing Fitness'])
        plt.ylabel('Distance')
        plt.xlabel('Iteration')
        plt.show()

    except:
        EH()
def main():
    """
    Main Function
    :return: None
    """
    try:
        while True:
            func_name, bounds = None, None
            flag = None
            D_range = [2, 50, 500]
            print(
                "\n Choose a dimension from the following list: [2, 50, 500]")
            print("\t or press any other KEY to EXIT .....")
            Dimension = int(input("\n Enter a dimension --> "))

            if Dimension in D_range:
                flag = True
                if flag:
                    print(f"\n 1: Shifted Sphere"
                          f"\n 2: Shifted Schwefel"
                          f"\n 3: Shifted Rosenbrock"
                          f"\n 4: Shifted Rastrigin"
                          f"\n 5: Shifted Griewank"
                          f"\n 6: Shifted Ackley"
                          f"\n ... Press any key to EXIT")
                    choice = int(input("\n Enter a choice? "))
                    if choice == 1:
                        func_name = "Shifted Sphere"
                        bounds = [(-100, 100) for i in range(Dimension)]
                    elif choice == 2:
                        func_name = "Shifted Schwefel"
                        bounds = [(-100, 100) for i in range(Dimension)]
                    elif choice == 3:
                        func_name = "Shifted Rosenbrock"
                        bounds = [(-100, 100) for i in range(Dimension)]
                    elif choice == 4:
                        func_name = "Shifted Rastrigin"
                        bounds = [(-5, 5) for i in range(Dimension)]
                    elif choice == 5:
                        func_name = "Shifted Griewank"
                        bounds = [(-600, 600) for i in range(Dimension)]
                    elif choice == 6:
                        func_name = "Shifted Ackley"
                        bounds = [(-32, 32) for i in range(Dimension)]
                    else:
                        print("\n--------------------")
                        print(
                            "The program interrupted ... function not found!")
                        print("--------------------\n")
                        flag = False
                        break
                if flag:
                    evaluations(func_name, bounds, Dimension)
            else:
                print(
                    "\n----------------------------------------------------------"
                )
                print(
                    "Required dimension is not in the list [2, 50, 100, 500]!")
                print(
                    "----------------------------------------------------------\n"
                )
                break

    except:
        EH()
示例#19
0
def animateTSP(country, history, points):
    """

    :param country: string
    :param history: list[int, float, float]
    :param points: list[int, float, float]
    :return:
    """
    try:
        # Prepare the coordinates for plotting the trip
        cityName = []
        latitude = []
        longitude = []
        for city in points:
            cityName.append(city[0])
            latitude.append(city[1] / 1000.)
            longitude.append(city[2] / 1000.)
        cityName.append(cityName[0])
        latitude.append(latitude[0])
        longitude.append(longitude[0])

        plt.figure(figsize=(7, 7))

        # Specify tripMap width and height
        if country == "Djibouti":
            tripMap = Basemap(width=350000,
                              height=270000,
                              resolution='i',
                              projection='tmerc',
                              lat_0=11.572076,
                              lon_0=43.145645)
        else:
            tripMap = Basemap(width=250000,
                              height=250000,
                              resolution='i',
                              projection='tmerc',
                              lat_0=25.286106,
                              lon_0=51.534817)

        tripMap.drawmapboundary(fill_color='aqua')
        tripMap.fillcontinents(color='#FFE4B5', lake_color='aqua')
        tripMap.drawcoastlines()
        tripMap.drawcountries()

        # Range the frames
        _frames = len(history) // 1500
        _frameRange = range(0, len(history), _frames)

        # Path is represented as line
        line = tripMap.plot([], [], 'D-', markersize=3, linewidth=1,
                            color='r')[0]

        # initial function
        def init_func():
            # Draw node dots on graph
            x = [longitude[i] for i in history[0]]
            y = [latitude[i] for i in history[0]]
            x, y = tripMap(x, y)
            tripMap.plot(x, y, 'bo', markersize=3)

            # Empty initialization
            line.set_data([], [])

            return line,

        # animate function
        def gen_function(frame):
            # Update the graph for each frame
            x = [longitude[i] for i in history[frame] + [history[frame][0]]]
            y = [latitude[i] for i in history[frame] + [history[frame][0]]]
            x, y = tripMap(x, y)
            line.set_data(x, y)

            return line

        # Animate the graph
        _animation = FuncAnimation(plt.gcf(),
                                   func=gen_function,
                                   frames=_frameRange,
                                   init_func=init_func,
                                   interval=10,
                                   repeat=False)
        plt.show()

    except:
        EH()
示例#20
0
        print("..." * 15)
        _Nodes = coordinates(args.filename)
        solutionObj, coordinatesObj, _fitnessObj, initFit, bestFit = repeatSA(
            6, _Nodes)

        # Visualize
        if choice == 1:
            animateTSP("Djibouti", solutionObj, coordinatesObj)
            plotLearning(_fitnessObj, initFit, bestFit)
        else:
            animateTSP("Qatar", solutionObj, coordinatesObj)
            plotLearning(_fitnessObj, initFit, bestFit)
    except:
        EH()


if __name__ == "__main__":
    try:
        # Install Required packages
        install_required_Packages()

        # load Packages
        import argparse
        import datetime as dt
        import numpy as np

        main()

    except:
        EH()