def train_mode(): nnet_model = None if opts.nnet_struct: nnet_model = NNET_Model.parse_structure(opts.nnet_struct) elif opts.fname_in_model: nnet_model = NNET_Model.load(opts.fname_in_model) trainset = data_util.load_data(opts.fname_train) eos_pad = misc.get_pading(opts.eos_pad) train_data_resource = data_util.data_spliter(trainset, batchsize=opts.batchsize, n_epoch=opts.n_epoch, EOS=eos_pad) optimizer, model = setup_training(nnet_model, opts) train_nnet(model, optimizer, train_data_resource, opts) if opts.fname_test: print('====================TESTING=========================') test_loss, pred, target = evaluation(model, opts.fname_test, show_progress=True) if 'cross_entropy' in opts.loss_function: misc.f_measure(pred, target) print(' test loss: %.3f' % test_loss) if opts.fname_out_model: nnet_model.save(opts.fname_out_model)
def test_mode(): loaded_model = NNET_Model.load(opts.fname_in_model) _, model = setup_training(loaded_model, opts) print('====================TESTING=========================') test_loss, pred, target = evaluation(model, opts.fname_test, show_progress=True) print(' test loss: %.3f' % test_loss) if 'cross_entropy' in opts.loss_function: misc.f_measure(pred, target)