def cfg_from_file(filename): """ Load a config file and merge it into the default options. Parameters ---------- filename : string Path to filename. """ import yaml with open(filename, 'r') as f: return eDict(yaml.load(f))
def cfg_from_file(filename): ''' Load a config file and merge it into the default options. Parameters ---------- filename : string Path to filename. ''' import yaml with open(filename, 'r') as f: yaml_cfg = eDict(yaml.load(f)) _merge_a_into_b(yaml_cfg, __C)
""" The module storing the general configuration information for the code """ from easydict import EasyDict as eDict import os generalConf = eDict({}) # Set the paths required for setting up and preprocessing the data generalConf.DATA_PATH = os.path.join(os.path.abspath("."), "../../Data") generalConf.TRAIN_DATA = os.path.join(generalConf.DATA_PATH, "train.csv") generalConf.TEST_DATA = os.path.join(generalConf.DATA_PATH, "test.csv") generalConf.SAMPLE_SUBMISSION = os.path.join(generalConf.DATA_PATH, "sample_submission.csv") # Set the constants for the data generalConf.MAX_WORD_LENGTH = 800 # derived from the common/visualizations/word_lengths_train.png plot generalConf.MIN_WORD_FREQ = 40 generalConf.MAX_WORD_FREQ = 40000 # The above two values have been derived generalConf.NUM_CLASSES = 6 # from the word_frequencies.png visualization # Set the constant files generalConf.PICKLE_FILE = os.path.join(generalConf.DATA_PATH, "plug_and_play.pickle") if __name__ == '__main__': print("Loading the General Configuration ...") print("\n\nGENERAL CONFIGURATION:\n") for key, value in generalConf.items(): print(key, "->", value)
from __future__ import division from __future__ import print_function from easydict import EasyDict as eDict import numpy as np __C = eDict() cfg = __C __C.CONFIG_NAME = 'ConNet' __C.DATASET_NAME = 'SVHN' __C.SEED = 1234 # Training options __C.TRAIN = eDict() __C.TRAIN.DATASET_SPLIT = 'train' __C.TRAIN.VALID_SPLIT = 0.8 __C.TRAIN.SAMPLE_SIZE = 100 __C.TRAIN.BATCH_SIZE = 32 __C.TRAIN.NUM_EPOCHS = 5 __C.TRAIN.LR = 0.001 __C.TRAIN.MOM = 0.9 def _merge_a_into_b(a, b): ''' Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. Parameters
""" The module storing the Model specific configuration """ from easydict import EasyDict as eDict modelConf = eDict({}) # Set the constants for the Model modelConf.FILTER_SIZE = 5 # all 1D convolutional filters have a width of 5 modelConf.TRAINING_PARTITION = 99 # percentage for training data. rest is the validation set modelConf.EMB_SIZE = 16 # size of the embedded input sequences if __name__ == '__main__': print("Loading the General Configuration ...") print("\n\nGENERAL CONFIGURATION:\n") for key, value in modelConf.items(): print(key, "->", value)