def main(argv): launch_instances = False if len(argv) >= 1 and argv[0] == "True": launch_instances = True utilizations = [0.8, 0.9] sample_ratios = [1, 1.1, 1.2, 1.5, 2.0, 3.0] sample_ratio_constrained = 2 # Amount of time it takes each task to run in isolation task_duration_ms = 100 tasks_per_job = 10 private_ssh_key = "patkey.pem" sparrow_branch = "master" nm_task_scheduler = "fifo" num_backends = 100 num_frontends = 10 cores_per_backend = 8 # Run each trial for 5 minutes. trial_length = 400 num_preferred_nodes = 0 num_users = 1 cluster = "probe" full_utilization_rate_s = (float(num_backends * cores_per_backend * 1000) / (task_duration_ms * tasks_per_job * num_frontends)) # Warmup information warmup_s = 30 post_warmup_s = 30 warmup_arrival_rate_s = 0.4 * full_utilization_rate_s if launch_instances: print "********Launching instances..." run_cmd("./ec2-exp.sh launch %s -f %s -b %s -i %s" % # --spot-price %s" % (cluster, num_frontends, num_backends, private_ssh_key)) time.sleep(10) for sample_ratio in sample_ratios: for utilization in utilizations: arrival_rate_s = utilization * full_utilization_rate_s # This is a little bit of a hacky way to pass args to the ec2 script. (opts, args) = ec2_exp.parse_args(False) opts.identity_file = private_ssh_key opts.arrival_rate = arrival_rate_s opts.branch = sparrow_branch opts.sample_ratio = sample_ratio opts.sample_ratio_constrained = sample_ratio_constrained opts.tasks_per_job = tasks_per_job opts.num_preferred_nodes = num_preferred_nodes opts.cpus = cores_per_backend conn = boto.connect_ec2() frontends, backends = ec2_exp.find_existing_cluster(conn, opts, cluster) print ("********Launching experiment at utilization %s with sample ratio %s..." % (utilization, sample_ratio)) print ("********Deploying with arrival rate %s and warmup arrival rate %s" % (arrival_rate_s, warmup_arrival_rate_s)) ec2_exp.deploy_cluster(frontends, backends, opts, warmup_arrival_rate_s, warmup_s, post_warmup_s, nm_task_scheduler) ec2_exp.start_sparrow(frontends, backends, opts) print "*******Sleeping after starting Sparrow" time.sleep(10) print "********Starting prototype frontends and backends" ec2_exp.start_proto(frontends, backends, opts) time.sleep(trial_length) log_dirname = "/home/ec2-user/sparrow/deploy/ec2/probe_ratio_%s_%s" % (utilization, sample_ratio) while os.path.exists(log_dirname): log_dirname = "%s_a" % log_dirname os.mkdir(log_dirname) ec2_exp.execute_command(frontends, backends, opts, "./find_bugs.sh") print "********Stopping prototypes and Sparrow" ec2_exp.stop_proto(frontends, backends, opts) ec2_exp.stop_sparrow(frontends, backends, opts) print "********Collecting logs and placing in %s" % log_dirname opts.log_dir = log_dirname ec2_exp.collect_logs(frontends, backends, opts)
opts.arrival_rate = arrival_rate_s opts.branch = sparrow_branch opts.sample_ratio = sample_ratio opts.sample_ratio_constrained = sample_ratio_constrained opts.tasks_per_job = tasks_per_job opts.num_preferred_nodes = num_preferred_nodes conn = boto.connect_ec2() frontends, backends = ec2_exp.find_existing_cluster(conn, opts) print ("********Launching experiment at utilization %s with sample ratio %s..." % (utilization, sample_ratio)) print ("********Deploying with arrival rate %s and warmup arrival rate %s" % (arrival_rate_s, warmup_arrival_rate_s)) ec2_exp.deploy_cluster(frontends, backends, opts, warmup_arrival_rate_s, warmup_s, post_warmup_s, num_users) ec2_exp.start_sparrow(frontends, backends, opts) print "*******Sleeping after starting Sparrow" time.sleep(10) print "********Starting prototype frontends and backends" ec2_exp.start_proto(frontends, backends, opts) time.sleep(trial_length) log_dirname = "/disk1/sparrow/fairness_%s_%s" % (utilization, sample_ratio) while os.path.exists(log_dirname): log_dirname = "%s_a" % log_dirname os.mkdir(log_dirname) ec2_exp.execute_command(frontends, backends, opts, "./find_bugs.sh")
def main(argv): launch_instances = False if len(argv) >= 1 and argv[0] == "True": launch_instances = True utilization_user_pairs = [(0.25, "high:1:0"), (0.5, "high:1:0,low:1:0"), (0.75, "high:1:0,low:2:0"), (1.0, "high:1:0,low:3:0"), (1.25, "high:1:0,low:4:0"), (1.5, "high:1:0,low:5:0"), (1.75, "high:1:0,low:6:0"), (2.0, "high:1:0,low:7:0")] sample_ratios = [2.0] sample_ratio_constrained = 1 # Amount of time it takes each task to run in isolation task_duration_ms = 100 tasks_per_job = 1 private_ssh_key = "patkey.pem" sparrow_branch = "debugging" num_backends = 5 num_frontends = 1 cores_per_backend = 4 # Run each trial for 5 minutes. trial_length = 500 num_preferred_nodes = 0 nm_task_scheduler = "priority" cluster_name = "isolation" full_utilization_rate_s = (float(num_backends * cores_per_backend * 1000) / (task_duration_ms * tasks_per_job * num_frontends)) # Warmup information warmup_s = 120 post_warmup_s = 30 warmup_arrival_rate_s = 0.4 * full_utilization_rate_s if launch_instances: print "********Launching instances..." run_cmd(("./ec2-exp.sh launch %s --ami ami-a658c0cf " + "--instance-type cr1.8xlarge --spot-price %s -f %s -b %s -i %s") % (cluster_name, 0.5, num_frontends, num_backends, private_ssh_key)) time.sleep(10) for sample_ratio in sample_ratios: for utilization, users in utilization_user_pairs: arrival_rate_s = utilization * full_utilization_rate_s # This is a little bit of a hacky way to pass args to the ec2 script. (opts, args) = ec2_exp.parse_args(False) opts.identity_file = private_ssh_key opts.arrival_rate = arrival_rate_s opts.branch = sparrow_branch opts.sample_ratio = sample_ratio opts.sample_ratio_constrained = sample_ratio_constrained opts.tasks_per_job = tasks_per_job opts.num_preferred_nodes = num_preferred_nodes opts.cpus = cores_per_backend conn = boto.connect_ec2() frontends, backends = ec2_exp.find_existing_cluster(conn, opts, cluster_name) print ("********Launching experiment at utilization %s with sample ratio %s..." % (utilization, sample_ratio)) print ("********Deploying with arrival rate %s and warmup arrival rate %s" % (arrival_rate_s, warmup_arrival_rate_s)) ec2_exp.deploy_cluster(frontends, backends, opts, warmup_arrival_rate_s, warmup_s, post_warmup_s, nm_task_scheduler, users) ec2_exp.start_sparrow(frontends, backends, opts) print "*******Sleeping after starting Sparrow" time.sleep(10) print "********Starting prototype frontends and backends" ec2_exp.start_proto(frontends, backends, opts) time.sleep(trial_length) log_dirname = "/disk1/sparrow/isolation_%s_%s" % (utilization, sample_ratio) while os.path.exists(log_dirname): log_dirname = "%s_a" % log_dirname os.mkdir(log_dirname) ec2_exp.execute_command(frontends, backends, opts, "./find_bugs.sh") print "********Stopping prototypes and Sparrow" ec2_exp.stop_proto(frontends, backends, opts) ec2_exp.stop_sparrow(frontends, backends, opts) print "********Collecting logs and placing in %s" % log_dirname opts.log_dir = log_dirname ec2_exp.collect_logs(frontends, backends, opts) run_cmd("gunzip %s/*.gz" % log_dirname) print "********Parsing logs" run_cmd(("cd /tmp/sparrow/src/main/python/ && ./parse_logs.sh log_dir=%s " "output_dir=%s/results start_sec=350 end_sec=450 && cd -") % (log_dirname, log_dirname))
def main(argv): launch_instances = False if len(argv) >= 1 and argv[0] == "True": launch_instances = True utilizations = [1.0] sample_ratios = [2.0] sample_ratio_constrained = 1 # Amount of time it takes each task to run in isolation task_duration_ms = 100 tasks_per_job = 3 private_ssh_key = "patkey.pem" sparrow_branch = "debugging" num_backends = 10 num_frontends = 1 cores_per_backend = 4 # Run each trial for many minutes. trial_length = 700 num_preferred_nodes = 0 nm_task_scheduler = "round_robin" full_utilization_rate_s = (float(num_backends * cores_per_backend * 1000) / (task_duration_ms * tasks_per_job * num_frontends)) # Warmup information warmup_s = 120 post_warmup_s = 30 warmup_arrival_rate_s = 0.4 * full_utilization_rate_s if launch_instances: print "********Launching instances..." run_cmd("./ec2-exp.sh launch -f %s -b %s -i %s" % (num_frontends, num_backends, private_ssh_key)) time.sleep(10) for sample_ratio in sample_ratios: for utilization in utilizations: arrival_rate_s = utilization * full_utilization_rate_s # This is a little bit of a hacky way to pass args to the ec2 script. (opts, args) = ec2_exp.parse_args(False) opts.identity_file = private_ssh_key opts.arrival_rate = arrival_rate_s opts.branch = sparrow_branch opts.sample_ratio = sample_ratio opts.sample_ratio_constrained = sample_ratio_constrained opts.tasks_per_job = tasks_per_job opts.num_preferred_nodes = num_preferred_nodes opts.frontend_type = "FairnessTestingFrontend" conn = boto.connect_ec2() frontends, backends = ec2_exp.find_existing_cluster(conn, opts) print ("********Launching experiment at utilization %s with sample ratio %s..." % (utilization, sample_ratio)) print ("********Deploying with arrival rate %s and warmup arrival rate %s" % (arrival_rate_s, warmup_arrival_rate_s)) ec2_exp.deploy_cluster(frontends, backends, opts, warmup_arrival_rate_s, warmup_s, post_warmup_s, nm_task_scheduler) ec2_exp.start_sparrow(frontends, backends, opts) print "*******Sleeping after starting Sparrow" time.sleep(10) print "********Starting prototype frontends and backends" ec2_exp.start_proto(frontends, backends, opts) time.sleep(trial_length) log_dirname = "/Users/keo/Documents/opportunistic-scheduling/sparrow/deploy/ec2/fairness_%s_%s" % (utilization, sample_ratio) while os.path.exists(log_dirname): log_dirname = "%s_a" % log_dirname os.mkdir(log_dirname) ec2_exp.execute_command(frontends, backends, opts, "./find_bugs.sh") print "********Stopping prototypes and Sparrow" ec2_exp.stop_proto(frontends, backends, opts) ec2_exp.stop_sparrow(frontends, backends, opts) print "********Collecting logs and placing in %s" % log_dirname opts.log_dir = log_dirname ec2_exp.collect_logs(frontends, backends, opts) run_cmd("gunzip %s/*.gz" % log_dirname) print "********Parsing logs" run_cmd(("cd ../../src/main/python/ && ./parse_logs.sh log_dir=%s " "output_dir=%s/results start_sec=240 end_sec=540 && cd -") % (log_dirname, log_dirname))
def main(argv): launch_instances = False if len(argv) >= 1 and argv[0] == "True": launch_instances = True utilizations = [0.8, 0.9] sample_ratios = [1, 1.1, 1.2, 1.5, 2.0, 3.0] sample_ratio_constrained = 2 # Amount of time it takes each task to run in isolation task_duration_ms = 100 tasks_per_job = 10 private_ssh_key = "patkey.pem" sparrow_branch = "master" nm_task_scheduler = "fifo" num_backends = 100 num_frontends = 10 cores_per_backend = 8 # Run each trial for 5 minutes. trial_length = 400 num_preferred_nodes = 0 num_users = 1 cluster = "probe" full_utilization_rate_s = ( float(num_backends * cores_per_backend * 1000) / (task_duration_ms * tasks_per_job * num_frontends)) # Warmup information warmup_s = 30 post_warmup_s = 30 warmup_arrival_rate_s = 0.4 * full_utilization_rate_s if launch_instances: print "********Launching instances..." run_cmd( "./ec2-exp.sh launch %s -f %s -b %s -i %s" % # --spot-price %s" % (cluster, num_frontends, num_backends, private_ssh_key)) time.sleep(10) for sample_ratio in sample_ratios: for utilization in utilizations: arrival_rate_s = utilization * full_utilization_rate_s # This is a little bit of a hacky way to pass args to the ec2 script. (opts, args) = ec2_exp.parse_args(False) opts.identity_file = private_ssh_key opts.arrival_rate = arrival_rate_s opts.branch = sparrow_branch opts.sample_ratio = sample_ratio opts.sample_ratio_constrained = sample_ratio_constrained opts.tasks_per_job = tasks_per_job opts.num_preferred_nodes = num_preferred_nodes opts.cpus = cores_per_backend conn = boto.connect_ec2() frontends, backends = ec2_exp.find_existing_cluster( conn, opts, cluster) print( "********Launching experiment at utilization %s with sample ratio %s..." % (utilization, sample_ratio)) print( "********Deploying with arrival rate %s and warmup arrival rate %s" % (arrival_rate_s, warmup_arrival_rate_s)) ec2_exp.deploy_cluster(frontends, backends, opts, warmup_arrival_rate_s, warmup_s, post_warmup_s, nm_task_scheduler) ec2_exp.start_sparrow(frontends, backends, opts) print "*******Sleeping after starting Sparrow" time.sleep(10) print "********Starting prototype frontends and backends" ec2_exp.start_proto(frontends, backends, opts) time.sleep(trial_length) log_dirname = "/home/ec2-user/sparrow/deploy/ec2/probe_ratio_%s_%s" % ( utilization, sample_ratio) while os.path.exists(log_dirname): log_dirname = "%s_a" % log_dirname os.mkdir(log_dirname) ec2_exp.execute_command(frontends, backends, opts, "./find_bugs.sh") print "********Stopping prototypes and Sparrow" ec2_exp.stop_proto(frontends, backends, opts) ec2_exp.stop_sparrow(frontends, backends, opts) print "********Collecting logs and placing in %s" % log_dirname opts.log_dir = log_dirname ec2_exp.collect_logs(frontends, backends, opts)
def main(argv): launch_instances = False if len(argv) >= 1 and argv[0] == "True": launch_instances = True utilization_user_pairs = [(0.25, "high:1:0"), (0.5, "high:1:0,low:1:0"), (0.75, "high:1:0,low:2:0"), (1.0, "high:1:0,low:3:0"), (1.25, "high:1:0,low:4:0"), (1.5, "high:1:0,low:5:0"), (1.75, "high:1:0,low:6:0"), (2.0, "high:1:0,low:7:0")] sample_ratios = [2.0] sample_ratio_constrained = 1 # Amount of time it takes each task to run in isolation task_duration_ms = 100 tasks_per_job = 1 private_ssh_key = "patkey.pem" sparrow_branch = "debugging" num_backends = 5 num_frontends = 1 cores_per_backend = 4 # Run each trial for 5 minutes. trial_length = 500 num_preferred_nodes = 0 nm_task_scheduler = "priority" cluster_name = "isolation" full_utilization_rate_s = ( float(num_backends * cores_per_backend * 1000) / (task_duration_ms * tasks_per_job * num_frontends)) # Warmup information warmup_s = 120 post_warmup_s = 30 warmup_arrival_rate_s = 0.4 * full_utilization_rate_s if launch_instances: print "********Launching instances..." run_cmd( ("./ec2-exp.sh launch %s --ami ami-a658c0cf " + "--instance-type cr1.8xlarge --spot-price %s -f %s -b %s -i %s") % (cluster_name, 0.5, num_frontends, num_backends, private_ssh_key)) time.sleep(10) for sample_ratio in sample_ratios: for utilization, users in utilization_user_pairs: arrival_rate_s = utilization * full_utilization_rate_s # This is a little bit of a hacky way to pass args to the ec2 script. (opts, args) = ec2_exp.parse_args(False) opts.identity_file = private_ssh_key opts.arrival_rate = arrival_rate_s opts.branch = sparrow_branch opts.sample_ratio = sample_ratio opts.sample_ratio_constrained = sample_ratio_constrained opts.tasks_per_job = tasks_per_job opts.num_preferred_nodes = num_preferred_nodes opts.cpus = cores_per_backend conn = boto.connect_ec2() frontends, backends = ec2_exp.find_existing_cluster( conn, opts, cluster_name) print( "********Launching experiment at utilization %s with sample ratio %s..." % (utilization, sample_ratio)) print( "********Deploying with arrival rate %s and warmup arrival rate %s" % (arrival_rate_s, warmup_arrival_rate_s)) ec2_exp.deploy_cluster(frontends, backends, opts, warmup_arrival_rate_s, warmup_s, post_warmup_s, nm_task_scheduler, users) ec2_exp.start_sparrow(frontends, backends, opts) print "*******Sleeping after starting Sparrow" time.sleep(10) print "********Starting prototype frontends and backends" ec2_exp.start_proto(frontends, backends, opts) time.sleep(trial_length) log_dirname = "/disk1/sparrow/isolation_%s_%s" % (utilization, sample_ratio) while os.path.exists(log_dirname): log_dirname = "%s_a" % log_dirname os.mkdir(log_dirname) ec2_exp.execute_command(frontends, backends, opts, "./find_bugs.sh") print "********Stopping prototypes and Sparrow" ec2_exp.stop_proto(frontends, backends, opts) ec2_exp.stop_sparrow(frontends, backends, opts) print "********Collecting logs and placing in %s" % log_dirname opts.log_dir = log_dirname ec2_exp.collect_logs(frontends, backends, opts) run_cmd("gunzip %s/*.gz" % log_dirname) print "********Parsing logs" run_cmd(( "cd /tmp/sparrow/src/main/python/ && ./parse_logs.sh log_dir=%s " "output_dir=%s/results start_sec=350 end_sec=450 && cd -") % (log_dirname, log_dirname))