def initialize_subscr_topics(self): # Initialize all the subscriber topics # self.h5_dvc_subscr_obj = ecal.subscriber(json_data['device_request']) self.h5_chnl_subscr_obj = ecal.subscriber(json_data['channel_request']) self.h5_img_subscr_obj = ecal.subscriber(json_data['hfl_request']) self.h5_pixelwriter_obj = ecal.subscriber( json_data['pixelwrite_request'])
def initialize_subscr_topics(self): # Initialize all the subscriber topics self.pnt_cld_dvc_subscr_obj = ecal.subscriber( json_data['pointcloud_device_request']) self.pnt_cld_data_subscr_obj = ecal.subscriber( json_data['pointcloud_data_request']) self.pnt_cld_end_subscr_obj = ecal.subscriber( json_data['pointcloud_end_response'])
def __init__(self): # Subscribe to the eCAL message to get the bsig path and the # signal names # self.bsig_path = bsig_pth # ecal.initialize(sys.argv, "Python signal value publisher") # Subscribe to RadarSignalRequest topic self.bsig_subscr_obj = ecal.subscriber(topic_name="BsigSignalNames") self.bsig_pub_obj = ecal.publisher(topic_name="BsigSignalValues") self.bsig_tmstamp_lst = [] self.sig_name_lst = [] self.subscribe_ecal_msgs()
def subscribe_signl_names(): ecal.initialize(sys.argv, "Detector mask subscriber") subscribe_sig_names_obj = ecal.subscriber(topic_name="Pixel_Response") rdr_sig_response = AlgoInterface_pb2.LabelResponse() while ecal.ok(): ret, msg, time = subscribe_sig_names_obj.receive(500) print("---:: ", ret, msg, time, type(msg)) if msg is not None: rdr_sig_response.ParseFromString(msg) object_attibute_lst = rdr_sig_response.NextAttr # print("object_attibute :: ", object_attibute_lst) for evry_obj_attr in object_attibute_lst: track_id = evry_obj_attr.trackID # print("track_id ::> ", track_id) class_obj = evry_obj_attr.type.object_class # print("class_obj :: ", class_obj) x1 = evry_obj_attr.ROI[0].X y1 = evry_obj_attr.ROI[0].Y x2 = evry_obj_attr.ROI[1].X y2 = evry_obj_attr.ROI[1].Y x3 = evry_obj_attr.ROI[2].X y3 = evry_obj_attr.ROI[2].Y x4 = evry_obj_attr.ROI[3].X y4 = evry_obj_attr.ROI[3].Y print("ordinates :: ", x1, x2, x3, x4, y1, y2, y3, y4) mask = evry_obj_attr.mask with open('img.txt', 'w+') as fhandle: fhandle.write(str(mask)) nparr = np.fromstring(mask, np.uint8) print("nparr :: ", nparr) re_img_np_ary = cv2.imdecode(nparr, cv2.IMREAD_COLOR) img_shape = re_img_np_ary.shape print("shape::", img_shape) cv2.imwrite('color_img.jpg', re_img_np_ary) cv2.imshow('Color image', re_img_np_ary) cv2.waitKey(0) cv2.destroyAllWindows()
import json import cv2 if getattr(sys, 'frozen', False): os.chdir(sys._MEIPASS) with open('topics.json') as data_file: json_data = json.load(data_file) # print(json_data) request = str(json_data['request']) response = str(json_data['response']) h5_filename = str(json_data['h5_filename']) ecal.initialize(sys.argv, "HFL data publisher") hfl_subscr_obj = ecal.subscriber(request) hfl_publs_obj = ecal.publisher(topic_name=response) hfl_req_proto_obj = imageservice_pb2.ImageRequest() hfl_resp_proto_obj = imageservice_pb2.HFLResponse() class H5ReaderSequence(object): def __init__(self, fname): self.reset(fname) self.lastLoadFilename = "" def reset(self, fname): if not os.path.isfile(fname): print("Error - H5 file not available: %s!" % fname) sys.exit()
def initialize_subscr_topics(self): # Initialize all the subscriber topics # self.lt5_img_subscr_obj = ecal.subscriber(self.json_data['image_request']) self.lt5_img_subscr_obj = ecal.subscriber(self.tracker_request) self.lt5_finl_subscr_obj = ecal.subscriber(self.json_data['algo_end_response'])
FROZEN_MODEL = "mask_rcnn_coco.h5" TOPICS_JSON = 'topics.json' with open(TOPICS_JSON) as data_file: json_data = json.load(data_file) # print(json_data) request = str(json_data['image_request']) response = str(json_data['image_response']) vis_flag = True if str(json_data['visualization']) == "True" else False full_eff_flag = True if str(json_data['full_efficiency']) == "True" else False ecal.initialize(sys.argv, "Mask RCNN MS COCO detector") ld_req_obj = imageservice_pb2.ImageResponse() subscriber_obj = ecal.subscriber(topic_name=request) lbl_response_obj = AlgoInterface_pb2.LabelResponse() publisher_roi_obj = ecal.publisher(topic_name=response) class InferenceConfig(coco.CocoConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 if not full_eff_flag: IMAGE_MIN_DIM = 512 IMAGE_MAX_DIM = 512