示例#1
0
def _fetch_forecast_data_for_month(variable,year,month,
                                   stream='enda'):
        
    # Need two sets of forecast data - from the runs at 6 and 18
    for start_hour in (6,18):

        local_file=_hourly_get_file_name(variable,year,month,
                                    fc_init=start_hour,stream=stream)
        if os.path.isfile(local_file):
            # Got this data already
            continue

        if not os.path.exists(os.path.dirname(local_file)):
            os.makedirs(os.path.dirname(local_file))

        if stream=='oper':
            server = ecmwfapi.ECMWFDataServer()
            server.retrieve({
                'dataset' : 'era5',
                'stream'  : 'oper',
                'type'    : 'fc',
                'levtype' : 'sfc',
                'param'   : _translate_for_file_names(variable),
                'grid'    : '0.25/0.25',
                'time'    : "%02d" % start_hour,
                'step'    : '0/to/18/by/1',
                'date'    : "%04d-%02d-%02d/to/%04d-%02d-%02d" %
                               (year,month,1,
                                year,month,
                                calendar.monthrange(year,month)[1]),
                'format'  : 'netcdf',
                'target'  : local_file
            })
        elif stream=='enda':
            server = ecmwfapi.ECMWFDataServer()
            server.retrieve({
                "class"   : "ea",
                "dataset" : "era5",
                'date'    : "%04d-%02d-%02d/to/%04d-%02d-%02d" %
                               (year,month,1,
                                year,month,
                                calendar.monthrange(year,month)[1]),
                "expver"  : "1",
                "levtype" : "sfc",
                "number"  : "0/1/2/3/4/5/6/7/8/9",
                "param"   : _translate_for_file_names(variable),
                "stream"  : "enda",
                'time'    : "%02d" % start_hour,
                'step'    : '0/to/18/by/3',
                "type"    : "fc",
                'grid'    : '0.5/0.5',
                'format'  : 'netcdf',
                "target"  : local_file
            })
        else:
            raise Exception("Unsupported stream %s" % stream)
示例#2
0
def _fetch_analysis_data_for_month(variable,year,month,
                                   stream='enda'):
        
    local_file=_hourly_get_file_name(variable,year,month,
                                     stream=stream)
    if os.path.isfile(local_file):
        # Got this data already
        return

    if not os.path.exists(os.path.dirname(local_file)):
        os.makedirs(os.path.dirname(local_file))

    if stream=='oper':
        grid='0.25/0.25'
        server = ecmwfapi.ECMWFDataServer()
        server.retrieve({
            'dataset'   : 'era5',
            'stream'    : 'oper',
            'type'      : 'an',
            'levtype'   : 'sfc',
            'param'     : _translate_for_file_names(variable),
            'grid'      : '0.25/0.25',
            'time'      : '0/to/23/by/1',
            'date'      : "%04d-%02d-%02d/to/%04d-%02d-%02d" %
                           (year,month,1,
                            year,month,
                            calendar.monthrange(year,month)[1]),
            'format'    : 'netcdf',
            'target'    : local_file
        })
    elif stream=='enda':
        server = ecmwfapi.ECMWFDataServer()
        server.retrieve({
            "class"   : "ea",
            "dataset" : "era5",
            'date'    : "%04d-%02d-%02d/to/%04d-%02d-%02d" %
                           (year,month,1,
                            year,month,
                            calendar.monthrange(year,month)[1]),
            "expver"  : "1",
            "levtype" : "sfc",
            "number"  : "0/1/2/3/4/5/6/7/8/9",
            "param"   : _translate_for_file_names(variable),
            "stream"  : "enda",
            "time"    : "0/to/21/by/3",
            "type"    : "an",
            'grid'    : '0.5/0.5',
            'format'  : 'netcdf',
            "target"  : local_file
        })
    else:
        raise Exception("Unsupported stream %s" % stream)
示例#3
0
def retrieve_prmon(mon,eifile,box = None):
    dx = 0.75
    startyear,endyear = 1980,2015
    dates = []
    for y in range(startyear,endyear + 1):
        numdays = calendar.monthrange(y,mon)[1]
        dates.extend([datetime.date(y,mon,d) for d in range(1,numdays + 1)])
    if(not os.path.isfile(eifile)):
        request = {"stream"  : "oper",
                   "levtype" : "sfc",
                   "param"   : "228.128",
                   "dataset" : "interim",
                   "step"    : "3/6/9/12",
                   "grid"    : '/'.join([str(dx),str(dx)]),
                   "time"    : "00:00:00/12:00:00",
                   "date"    : '/'.join([d.strftime("%Y-%m-%d") for d in dates]),
                   "type"    : "fc",
                   "class"   : "ei",
                   "format"  : "netcdf",
                   "target"  : eifile
                   }
        if(box):
            extent = []
            if(len(box) == 2):
                extent = [box[0] + dx,box[1] - dx,box[0] - dx,box[1] + dx]
            else:
                extent = [box[1],box[2],box[0],box[3]]
            request["area"] = '/'.join([str(c) for c in extent])
        print "The request is",request
        server = ecmwfapi.ECMWFDataServer()
        server.retrieve(request)
    return eifile
    def click_ecmwfapi_request(b):
        with out:
            time_6 = ""
            time_12 = ""
            time_18 = ""
            if hour_06.value == True:
                time_6 = "/06:00:00"
            if hour_12.value == True:
                time_12 = "/12:00:00"
            if hour_18.value == True:
                time_18 = "/18:00:00"

            time_param = time_6 + time_12 + time_18

            server = ecmwfapi.ECMWFDataServer()
            server.retrieve({
                "class": "mc",
                "dataset": "cams_nrealtime",
                "date": str(start_date_widget.value) + "/to/" + str(current_date_widget.value),
                "expver": "0001",
                "levtype": "sfc",
                "param": parameter_value(data_parameter_widget.value),
                "step": "0",
                "stream": "oper",
                "time": "00:00:00" + time_param,
                "type": "an",
                "target": output_filename,
            })
def test_dataset():
    while True:
        try:
            c = ecmwfapi.ECMWFDataServer("mars")
            c.retrieve({
                "dataset": "tigge",
                "step": "24",
                "levtype": "sl",
                "date": "20071001",
                "time": "00",
                "origin": "ecmf",
                "type": "cf",
                "param": "2t",
                "target": "tigge.grib",
            })
            assert os.path.getsize("tigge.grib") == 428963
            return

        except ecmwfapi.api.APIException as e:
            print(e)
            msg = str(e)
            if "USER_QUEUED_LIMIT_EXCEEDED" not in msg:
                raise

        time.sleep(120)
示例#6
0
    def _get_from_ecmwf(self, lat_min, lat_max, lat_step, lon_min, lon_max,
                        lon_step, time, out):
        import ecmwfapi

        server = ecmwfapi.ECMWFDataServer()

        corrected_date = util.round_date(time, datetime.timedelta(hours=6))

        server.retrieve({
            "class":
            self._classname,  # ERA-Interim
            'dataset':
            self._dataset,
            "expver":
            "1",
            # They warn me against all, but it works well
            "levelist":
            'all',
            "levtype":
            "ml",  # Model levels
            "param":
            "lnsp/q/z/t",  # Necessary variables
            "stream":
            "oper",
            # date: Specify a single date as "2015-08-01" or a period as
            # "2015-08-01/to/2015-08-31".
            "date":
            datetime.datetime.strftime(corrected_date, "%Y-%m-%d"),
            # type: Use an (analysis) unless you have a particular reason to
            # use fc (forecast).
            "type":
            "an",
            # time: With type=an, time can be any of
            # "00:00:00/06:00:00/12:00:00/18:00:00".  With type=fc, time can
            # be any of "00:00:00/12:00:00",
            "time":
            datetime.time.strftime(corrected_date.time(), "%H:%M:%S"),
            # step: With type=an, step is always "0". With type=fc, step can
            # be any of "3/6/9/12".
            "step":
            "0",
            # grid: Only regular lat/lon grids are supported.
            "grid":
            '{}/{}'.format(lat_step, lon_step),
            "area":
            '{}/{}/{}/{}'.format(lat_max, lon_min, lat_min,
                                 lon_max),  # area: N/W/S/E
            "format":
            "netcdf",
            "resol":
            "av",
            "target":
            out,  # target: the name of the output file.
        })
def retrieve_level(reqbase, reqext={}, append=False):
    # merge requests
    req = reqbase.copy()
    req.update(reqext)

    if append:  # save real target name and d/l request to a tmp target file
        savetarget = req['target']
        req['target'] = req['target'] + '.tmp'
    server = ecmwfapi.ECMWFDataServer()
    server.retrieve(req)
    if append:  # append to real target by file objects
        if os.path.isfile(req['target']):
            targetobj = open(savetarget, 'ab')
            shutil.copyfileobj(open(req['target'], 'rb'), targetobj)
            targetobj.close()
            os.unlink(req['target'])  # rm tmp target file
        req['target'] = savetarget  # restore real target
示例#8
0
def _fetch_analysis_data_for_month(variable, year, month):

    local_file = _hourly_get_file_name(variable, year, month)
    if os.path.isfile(local_file):
        # Got this data already
        return

    if not os.path.exists(os.path.dirname(local_file)):
        os.makedirs(os.path.dirname(local_file))

    server = ecmwfapi.ECMWFDataServer()
    server.retrieve({
        "dataset":
        "cera20c",
        "stream":
        "enda",
        "type":
        "an",
        "class":
        "ep",
        "expver":
        "1",
        "levtype":
        "sfc",
        "param":
        _translate_for_file_names(variable),
        "time":
        "00/03/06/09/12/15/18/21",
        "grid":
        "1.25/1.25",
        "number":
        "0/1/2/3/4/5/6/7/8/9",
        "date":
        "%04d-%02d-%02d/to/%04d-%02d-%02d" %
        (year, month, 1, year, month, calendar.monthrange(year, month)[1]),
        "format":
        "netcdf",
        "target":
        local_file,
    })
示例#9
0
def _fetch_analysis_data_for_month(variable, year, month):

    local_file = _hourly_get_file_name(variable, year, month)
    if os.path.isfile(local_file):
        # Got this data already
        return

    if not os.path.exists(os.path.dirname(local_file)):
        os.makedirs(os.path.dirname(local_file))

    server = ecmwfapi.ECMWFDataServer()
    server.retrieve({
        'dataset':
        'cera20c',
        'stream':
        'enda',
        'type':
        'an',
        'class':
        'ep',
        'expver':
        '1',
        'levtype':
        'sfc',
        'param':
        _translate_for_file_names(variable),
        'time':
        '00/03/06/09/12/15/18/21',
        'grid':
        '1.25/1.25',
        'number':
        '0/1/2/3/4/5/6/7/8/9',
        'date':
        "%04d-%02d-%02d/to/%04d-%02d-%02d" %
        (year, month, 1, year, month, calendar.monthrange(year, month)[1]),
        'format':
        'netcdf',
        'target':
        local_file
    })
示例#10
0
def _fetch_forecast_data_for_month(variable, year, month):

    # Want 27 hours of forecast for each day
    #         (so we can interpolate over the seam),
    #  but the 27-hr forcast from one day has the same
    #      validity time as the 3-hr forecast from the
    #       next day - so need to download them separately
    #       and store in different files.

    # First 24-hours of forecast in main file
    local_file = _hourly_get_file_name(variable, year, month, fc_init=None)
    if os.path.isfile(local_file):
        # Got this data already
        return

    if not os.path.exists(os.path.dirname(local_file)):
        os.makedirs(os.path.dirname(local_file))

    server = ecmwfapi.ECMWFDataServer()
    server.retrieve({
        "dataset":
        "cera20c",
        "stream":
        "enda",
        "type":
        "fc",
        "class":
        "ep",
        "expver":
        "1",
        "levtype":
        "sfc",
        "param":
        _translate_for_file_names(variable),
        "time":
        "18",
        "step":
        "3/6/9/12/15/18/21/24",
        "grid":
        "1.25/1.25",
        "number":
        "0/1/2/3/4/5/6/7/8/9",
        "date":
        "%04d-%02d-%02d/to/%04d-%02d-%02d" %
        (year, month, 1, year, month, calendar.monthrange(year, month)[1]),
        "format":
        "netcdf",
        "target":
        local_file,
    })

    # 27-hour forecast in additional file
    local_file = _hourly_get_file_name(variable, year, month, fc_init="last")
    if os.path.isfile(local_file):
        # Got this data already
        return

    if not os.path.exists(os.path.dirname(local_file)):
        os.makedirs(os.path.dirname(local_file))

    server = ecmwfapi.ECMWFDataServer()
    server.retrieve({
        "dataset":
        "cera20c",
        "stream":
        "enda",
        "type":
        "fc",
        "class":
        "ep",
        "expver":
        "1",
        "levtype":
        "sfc",
        "param":
        _translate_for_file_names(variable),
        "time":
        "18",
        "step":
        "27",
        "grid":
        "1.25/1.25",
        "number":
        "0/1/2/3/4/5/6/7/8/9",
        "date":
        "%04d-%02d-%02d/to/%04d-%02d-%02d" %
        (year, month, 1, year, month, calendar.monthrange(year, month)[1]),
        "format":
        "netcdf",
        "target":
        local_file,
    })
示例#11
0
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
############################################
#
# PyGdalSAR: An InSAR post-processing package
# written in Python-Gdal
#
############################################
# Author        : Simon DAOUT (Oxford)
############################################

import ecmwfapi

server = ecmwfapi.ECMWFDataServer()
server.retrieve({
    "class": "ea",
    "dataset": "era5",
    "date": "2007-01-01/to/2010-12-31",  # Time period
    "expver": "1",
    "levtype": "pl",
    "levelist": "850/700/600/500",
    "param":
    "130",  # Parameters. Here we use 2m Temperature (2t) and Surface Pressure (sp). See the ECMWF parameter database, at http://apps.ecmwf.int/codes/grib/param-db
    "stream": "oper",
    "type": "an",
    "time": "0/12",
    "step": "0",
    "area":
    "27.25/89.00/28.25/90.00",  # Subset or clip to an area, here to Europe. Specify as North/West/South/East in Geographic lat/long degrees. Southern latitudes and Western longitudes must be given as negative numbers.
    "grid":
    "0.25/0.25",  # Regrid from the default grid to a regular lat/lon with specified resolution. The first number is east-west resolution (longitude) and the second is north-south (latitude).
示例#12
0
def era(
    params,
    stream,
    levtype,
    daterange=None,
    yearrange=None,
    monthrange=None,
    # dayrange=None,  # not yet used
    years=None,
    months=None,
    format='netcdf',
    forecast=False,
    step=12,
    levrange=None,
    levs=None,
    grid=None,
    hours=(0, 6, 12, 18),
    hour=None,
    res=None,
    box=None,
    filename='era.nc',
):
    """
    Retrieves ERA reanalysis data using the provided API. User must have, in
    home directory, a file named ``.ecmwfapirc``. See API documentation, but
    should look like:

    ::

        {
        "url"   : "https://api.ecmwf.int/v1",
        "key"   : "abcdefghijklmnopqrstuvwxyz",
        "email" : "*****@*****.**"
        }

    with the key found on your user/profile page on the ECMWF website.

    Parameters
    ----------
    params : str or list of str
        Variable name. Gets translated to MARS id name by dictionary below.
        Add to this from the `online GRIB table <https://rda.ucar.edu/datasets/ds627.0/docs/era_interim_grib_table.html>`_.
        Pay attention to *available groups*. If not available for the group
        you selected (e.g. pressure levs, moda), get ``ERROR 6 (MARS_EXPECTED_FIELDS)``.
        For rates of change of *parameterized* processes (i.e. diabatic) see
        `this link <https://confluence.ecmwf.int/pages/viewpage.action?pageId=57448466>`_.
    stream : {'oper', 'moda', 'mofm', 'mdfa', 'mnth'}
        The data stream.
    levtype : {'ml', 'pl', 'sfc', 'pt', 'pv'}
        Level type: model, pressure, surface, potential temperature, and 2PVU
        surface, respectively.
    levrange : float or (float, float), optional
        Individual level or range of levels.
    levs : float or ndarray, optional
        Individual level or list of levels.
    yearrange : int or (int, int)
        Individual year or range of years.
    years : int or ndarray, optional
        Individual year or list of years.
    monthrange : int or (int, int), optional
        Individual month or range of months.
    months : int or ndarray, optional
        Individual month or list of months.
    daterange : (datetime.datetime, datetime.datetime), optional
        Range of dates.
    hours : {0, 6, 12, 18} or list thereof, optional
        Hour(s) (UTC) of observation.
    forecast : bool, optional
        Whether we want forecast `'fc'` or analysis `'an'` data. Note that
        some data is only available in `'fc'` mode, e.g. diabatic heating.
    grid : str, optional
        The grid type. Default is ``N32`` which returns data on 64 latitudes.
    res : float, optional
        Alternative to `grid` that specifies the desired output grid resolution
        in degrees. ERA-Interim has a few valid preset resolutions and will
        choose the resolution that most closely matches the input.
    box : str or length-4 list of float, optional
        String name for particular region, e.g. ``'europe'``, or the west,
        south, east, and north boundaries, respectively.
    format : {'grib1', 'grib2', 'netcdf'}, optional
        Output format.
    filename : str, optional
        Name of file output.


    Notes
    -----
    Some fields (seems true for most model fields) are not archived as
    monthly means for some reason! Have no idea why because it would need
    almost zero storage requirements.
    """  # noqa: E501
    # Data stream
    import ecmwfapi as ecmwf  # only do so inside function

    # Variable id conversion (see:
    # https://rda.ucar.edu/datasets/ds627.0/docs/era_interim_grib_table.html)
    if isinstance(params, str) or not np.iterable(params):
        params = (params,)
    params = [
        {
            'tdt': '110.162',
            # model-level surface pressure; use this whenever getting tdt and stuff
            # (requires lev=1)
            'msp': '152.128',
            'sp': '134.128',  # surface pressure
            't2m': '167.128',  # 2m temp
            'd2m': '168.128',  # 2m dew point
            'sst': '34.128',  # sst
            'msl': '151.128',  # sea level pressure
            'slp': '151.128',  # same
            'z': '129.128',  # geopotential
            't': '130.128',  # temp
            'u': '131.128',  # u wind
            'v': '132.128',  # v wind
            'w': '135.128',  # w wind
            'q': '133.128',  # specific humidity
            'r': '157.128',  # relative humidity
            'vort': '138.128',  # relative vorticity
            'vo': '138.128',  # same
            'zeta': '138.128',  # same
            'pt': '3.128',  # potential temp (available on 2pvu surf)
            'theta': '3.128',  # same
            'p': '54.128',  # pressure (availble on pt, 2pvu surfaces)
            'pres': '54.128',  # same
            # potential vorticity (available on p, pt surfaces)
            'pv': '60.128',
            'precip': '228.128',
        }.get(p)
        for p in params
    ]  # returns generator object for each param
    if None in params:
        raise ValueError(
            'MARS id for variable is unknown (might need to be added to this script).'
        )
    params = '/'.join(params)

    # Time selection as various RANGES or LISTS
    # Priority; just use daterange as datetime or date objects
    if daterange is not None:
        if not np.iterable(daterange):
            daterange = (daterange,)  # want a SINGLE DAY
        # options for monthly or daily data
        if stream != 'oper':
            y0, m0, y1, m1 = (
                daterange[0].year,
                daterange[0].month,
                daterange[1].year,
                daterange[1].month,
            )
            N = max(y1 - y0 - 1, 0) * 12 + (13 - m0) + m1  # number of months in range
            dates = '/'.join(
                '%04d%02d00' % (y0 + (m0 + n - 1) // 12, (m0 + n - 1) % 12 + 1)
                for n in range(N)
            )
        else:
            # MARS will get calendar days in range
            dates = '/to/'.join(d.strftime('%Y%m%d') for d in daterange)

    # Alternative; list the years/months desired, and if synoptic, get all
    # calendar days within
    else:
        # First, years
        if years is not None:
            if not np.iterable(years):
                years = (years,)  # single month
        elif yearrange is not None:
            if not np.iterable(yearrange):
                years = (yearrange,)
            else:
                years = tuple(range(yearrange[0], yearrange[1] + 1))
        else:
            raise ValueError('You must use "years" or "yearrange" kwargs.')
        # Next, months (this way, can just download JJA data, for example)
        if months is not None:
            if not np.iterable(months):
                months = (months,)  # single month
        elif monthrange is not None:
            if not np.iterable(monthrange):
                months = (monthrange, monthrange)
            else:
                months = tuple(range(monthrange[0], monthrange[1] + 1))
        else:
            months = tuple(range(1, 13))
        # And get dates; options for monthly means and daily stuff
        if stream != 'oper':
            dates = '/'.join(
                '/'.join('%04d%02d00' % (y, m) for m in months) for y in years
            )
        else:
            dates = '/'.join(
                '/'.join(
                    '/'.join(
                        '%04d%02d%02d' % (y, m, i + 1)
                        for i in range(calendar.monthrange(y, m)[1])
                    )
                    for m in months
                )
                for y in years
            )

    # Level selection as RANGE or LIST
    # Update this list if you modify script for ERA5, etc.
    levchoices = {
        'sfc': None,
        'pv': None,
        'ml': np.arange(1, 137 + 1),
        'pl': np.array(
            [
                1, 2, 3, 5, 7, 10, 20, 30, 50, 70,
                100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550,
                600, 650, 700, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000,
            ]
        ),
        'pt': np.array(
            [265, 270, 285, 300, 315, 330, 350, 370, 395, 430, 475, 530, 600, 700, 850]
        ),
    }.get(levtype, [])
    if levchoices == []:
        raise ValueError('Invalid level type. Choose from "pl", "pt", "pv", "sfc".')
    # More options
    # WARNING: Some vars are technically on "levels" like hybrid level surface
    # pressure, but we still need 60.
    if levtype not in ('sfc', 'pv'):  # these have multiple options
        # Require input
        if levs is None and levrange is None:
            raise ValueError(
                'Must specify list of levels to "levs" kwarg, range of levels '
                'to "levrange" kwarg, or single level to either one.'
            )
        # Convert levels to mars request
        if levs is not None:
            if not np.iterable(levs):
                levs = (levs,)
        else:
            if not np.iterable(levrange):
                levs = (levrange,)
            else:
                levs = levchoices[
                    (levchoices >= levrange[0]) & (levchoices <= levrange[1])
                ].flat
        levs = '/'.join(str(l) for l in levs)

    # Other parameters
    # Resolution
    # same in latitude/longitude required, for now
    if res is not None:
        grid = '%.5f/%.5f' % (res, res)
    elif grid is None:
        grid = 'N32'
    # Area - can be specified as pre-defined region (e.g. string 'europe') OR
    # n/s/w/e boundary
    if box is not None and not isinstance(box, str):
        box = '/'.join(str(b) for b in (box[3], box[0], box[2], box[1]))
    # Hour conversion
    if not np.iterable(hours):
        hours = (hours,)
    hours = '/'.join(str(h).zfill(2) for h in hours)  # zfill padds 0s on left
    # Forecast type
    # TODO: Fix the 12 hour thing. Works for some params (e.g. diabatic
    # heating, has 3, 6, 9, 12) but others have 0, 6, 12, 18.
    if forecast:
        dtype, step = 'fc', str(step)
    else:
        dtype, step = 'an', '0'

    # Server instructions
    # Not really sure what happens in some situations: list so far:
    # 1. Evidently if you provide with variable string-name instead of numeric ID,
    #    MARS will search for correct one; if there is name ambiguity/conflict will
    #    throw error.
    # 2. On GUI framework, ECMWF only offers a few resolution options, but program
    #    seems to run when requesting custom resolutions like 5deg/5deg
    # Can also spit raw output into GRIB; apparently ERA-Interim uses
    # bilinear interpolation to make grid of point obs, which makes sense,
    # because their reanalysis model just picks out point observations
    # from spherical harmonics; so maybe grid cell concept is dumb? Maybe need
    # to focus on just using cosine weightings, forget about rest?
    request = {
        # Important ones
        'class': 'ei',  # ecmwf classifiction; choose ERA-Interim
        'expver': '1',
        'dataset': 'interim',  # thought we already did that; *shrug*
        'type': dtype,  # type of field; analysis 'an' or forecast 'fc'
        'resol': 'av',  # prevents truncation before transformation to geo grid
        'gaussian': 'reduced',
        'format': format,
        'step': step,  # NOTE: ignored for non-forecast type
        'grid': grid,  # 64 latitudes, i.e. T42 truncation
        'stream': stream,  # product monthly, raw, etc.
        'date': dates,
        'time': hours,
        'levtype': levtype,
        'param': params,
        'target': filename,  # save location
    }
    maxlen = max(map(len, request.keys()))
    if levs is not None:
        request.update(levelist=levs)
    if box is not None:
        request.update(area=box)
    if stream == 'oper':  # TODO: change?
        request.update(hour=hour)
    print(
        'REQUEST\n'
        + '\n'.join(
            f'"{key}": ' + ' ' * (maxlen - len(key)) + f'{value}'
            for key, value in request.items()
        )
    )
    # Retrieve DATA with settings
    server = ecmwf.ECMWFDataServer()
    server.retrieve(request)
    return
示例#13
0
def _fetch_forecast_data_for_month(variable, year, month):

    # Want 27 hours of forecast for each day
    #         (so we can interpolate over the seam),
    #  but the 27-hr forcast from one day has the same
    #      validity time as the 3-hr forecast from the
    #       next day - so need to download them separately
    #       and store in different files.

    # First 24-hours of forecast in main file
    local_file = _hourly_get_file_name(variable, year, month, fc_init=None)
    if os.path.isfile(local_file):
        # Got this data already
        return

    if not os.path.exists(os.path.dirname(local_file)):
        os.makedirs(os.path.dirname(local_file))

    server = ecmwfapi.ECMWFDataServer()
    server.retrieve({
        'dataset':
        'cera20c',
        'stream':
        'enda',
        'type':
        'fc',
        'class':
        'ep',
        'expver':
        '1',
        'levtype':
        'sfc',
        'param':
        _translate_for_file_names(variable),
        'time':
        '18',
        'step':
        '3/6/9/12/15/18/21/24',
        'grid':
        '1.25/1.25',
        'number':
        '0/1/2/3/4/5/6/7/8/9',
        'date':
        "%04d-%02d-%02d/to/%04d-%02d-%02d" %
        (year, month, 1, year, month, calendar.monthrange(year, month)[1]),
        'format':
        'netcdf',
        'target':
        local_file
    })

    # 27-hour forecast in additional file
    local_file = _hourly_get_file_name(variable, year, month, fc_init='last')
    if os.path.isfile(local_file):
        # Got this data already
        return

    if not os.path.exists(os.path.dirname(local_file)):
        os.makedirs(os.path.dirname(local_file))

    server = ecmwfapi.ECMWFDataServer()
    server.retrieve({
        'dataset':
        'cera20c',
        'stream':
        'enda',
        'type':
        'fc',
        'class':
        'ep',
        'expver':
        '1',
        'levtype':
        'sfc',
        'param':
        _translate_for_file_names(variable),
        'time':
        '18',
        'step':
        '27',
        'grid':
        '1.25/1.25',
        'number':
        '0/1/2/3/4/5/6/7/8/9',
        'date':
        "%04d-%02d-%02d/to/%04d-%02d-%02d" %
        (year, month, 1, year, month, calendar.monthrange(year, month)[1]),
        'format':
        'netcdf',
        'target':
        local_file
    })
示例#14
0
def _fetch_analysis_data_for_month(variable, year, month, stream="enda"):

    local_file = _hourly_get_file_name(variable, year, month, stream=stream)
    if os.path.isfile(local_file):
        # Got this data already
        return

    if not os.path.exists(os.path.dirname(local_file)):
        os.makedirs(os.path.dirname(local_file))

    if stream == "oper":
        grid = "0.25/0.25"
        server = ecmwfapi.ECMWFDataServer()
        server.retrieve({
            "dataset":
            "era5",
            "stream":
            "oper",
            "type":
            "an",
            "levtype":
            "sfc",
            "param":
            _translate_for_file_names(variable),
            "grid":
            "0.25/0.25",
            "time":
            "0/to/23/by/1",
            "date":
            "%04d-%02d-%02d/to/%04d-%02d-%02d" %
            (year, month, 1, year, month, calendar.monthrange(year, month)[1]),
            "format":
            "netcdf",
            "target":
            local_file,
        })
    elif stream == "enda":
        server = ecmwfapi.ECMWFDataServer()
        server.retrieve({
            "class":
            "ea",
            "dataset":
            "era5",
            "date":
            "%04d-%02d-%02d/to/%04d-%02d-%02d" %
            (year, month, 1, year, month, calendar.monthrange(year, month)[1]),
            "expver":
            "1",
            "levtype":
            "sfc",
            "number":
            "0/1/2/3/4/5/6/7/8/9",
            "param":
            _translate_for_file_names(variable),
            "stream":
            "enda",
            "time":
            "0/to/21/by/3",
            "type":
            "an",
            "grid":
            "0.5/0.5",
            "format":
            "netcdf",
            "target":
            local_file,
        })
    else:
        raise Exception("Unsupported stream %s" % stream)