def estimate_diversity(taxon_table_t):
    """ Function to estimate common diversity matrics from a taxon table
    with samples as rows and observation/otus/pathogens as column
    the output of this function is a dataframe of the diversity matrices per sample
    """
    # Import the modules for diversity calculations and manipulating dataframes
    # Get the sample names which are the indices of the transposed taxon table
    table_samples = taxon_table_t.index.tolist()

    # Get the number of observed otus / pathogens per sample
    observed_pathogens = []  #initialize an empty list
    # Calculate the observed species per sample
    for sample in table_samples:
        observed_pathogens.append(
            observed_otus(table=taxon_table_t, sample_id=sample))

    # Estimate diversity
    shannon = ep.diversity(x=taxon_table_t, method='shannon')
    simpson = ep.diversity(x=taxon_table_t, method='simpson')
    species_richness = ep.diversity(x=taxon_table_t, method='spRich')
    eveness = ep.diversity(x=taxon_table_t, method='even')

    # Convert the estimates to Pandas series
    shannon = pd.Series(data=shannon, index=table_samples)
    simpson = pd.Series(data=simpson, index=table_samples)
    observed_pathogens = pd.Series(data=observed_pathogens,
                                   index=table_samples)
    species_richness = pd.Series(data=species_richness, index=table_samples)
    eveness = pd.Series(data=eveness, index=table_samples)

    diversity_dict = {
        'observed_species': observed_pathogens,
        'species_richness': species_richness,
        'eveness': eveness,
        'shannon': shannon,
        'simpson': simpson
    }
    diversity_table = pd.DataFrame(data=diversity_dict)

    return (diversity_table)
def diversity(otu_table):
    methods = ['shannon' , 'gini-simpson', 'simpson' , 'dominance',  'spRich', 'even']
    index = list(otu_table.index)
    
    methods_res = {}
    for m in methods:
        div = ecopy.diversity(otu_table, method=m, breakNA=True)
#         methods_res.append(list(div))
        methods_res.update({m:list(div)})
    
    div_pd = pd.DataFrame(methods_res, columns=methods)
    div_pd.index = otu_table.index

    return div_pd
示例#3
0
 def test_diversity(self):
     sp = np.array([0, 1, 2, 3, 0]).reshape(1, 5)
     div = np.round(diversity(sp))
     self.assertEqual(div, 1)
示例#4
0
	def test_diversity(self):
		sp = np.array([0, 1, 2, 3, 0]).reshape(1,5)
		div = np.round(diversity(sp))
		self.assertEqual(div, 1)