示例#1
0
def vocab_from_tsv(tsv_file_path, lower=False, lock_word_vocab=False, lock_char_vocab=True, lock_tag_vocab=True) \
        -> Tuple[VocabTF, VocabTF, VocabTF]:
    word_vocab = VocabTF()
    char_vocab = VocabTF()
    tag_vocab = VocabTF(unk_token=None)
    with open(tsv_file_path, encoding='utf-8') as tsv_file:
        for line in tsv_file:
            cells = line.strip().split()
            if cells:
                word, tag = cells
                if lower:
                    word_vocab.add(word.lower())
                else:
                    word_vocab.add(word)
                char_vocab.update(list(word))
                tag_vocab.add(tag)
    if lock_word_vocab:
        word_vocab.lock()
    if lock_char_vocab:
        char_vocab.lock()
    if lock_tag_vocab:
        tag_vocab.lock()
    return word_vocab, char_vocab, tag_vocab
示例#2
0
class TACREDTransform(Transform):
    def __init__(self,
                 config: SerializableDict = None,
                 map_x=True,
                 map_y=True,
                 lower=False,
                 **kwargs) -> None:
        super().__init__(**merge_locals_kwargs(locals(), kwargs))
        self.token_vocab = VocabTF()
        self.pos_vocab = VocabTF(pad_token=None, unk_token=None)
        self.ner_vocab = VocabTF(pad_token=None)
        self.deprel_vocab = VocabTF(pad_token=None, unk_token=None)
        self.rel_vocab = VocabTF(pad_token=None, unk_token=None)

    def fit(self, trn_path: str, **kwargs) -> int:
        count = 0
        for (tokens, pos, ner, head, deprel, subj_positions, obj_positions,
             subj_type, obj_type), relation in self.file_to_samples(trn_path,
                                                                    gold=True):
            count += 1
            self.token_vocab.update(tokens)
            self.pos_vocab.update(pos)
            self.ner_vocab.update(ner)
            self.deprel_vocab.update(deprel)
            self.rel_vocab.add(relation)
        return count

    def file_to_inputs(self, filepath: str, gold=True):
        data = load_json(filepath)
        for d in data:
            tokens = list(d['token'])
            ss, se = d['subj_start'], d['subj_end']
            os, oe = d['obj_start'], d['obj_end']
            pos = d['stanford_pos']
            ner = d['stanford_ner']
            deprel = d['stanford_deprel']
            head = [int(x) for x in d['stanford_head']]
            assert any([x == 0 for x in head])
            relation = d['relation']
            yield (tokens, pos, ner, head, deprel, ss, se, os, oe), relation

    def inputs_to_samples(self, inputs, gold=False):
        for input in inputs:
            if gold:
                (tokens, pos, ner, head, deprel, ss, se, os,
                 oe), relation = input
            else:
                tokens, pos, ner, head, deprel, ss, se, os, oe = input
                relation = self.rel_vocab.safe_pad_token
            l = len(tokens)
            subj_positions = get_positions(ss, se, l)
            obj_positions = get_positions(os, oe, l)
            subj_type = ner[ss]
            obj_type = ner[os]
            # anonymize tokens
            tokens[ss:se + 1] = ['SUBJ-' + subj_type] * (se - ss + 1)
            tokens[os:oe + 1] = ['OBJ-' + obj_type] * (oe - os + 1)
            # min head is 0, but root is not included in tokens, so take 1 off from each head
            head = [h - 1 for h in head]
            yield (tokens, pos, ner, head, deprel, subj_positions,
                   obj_positions, subj_type, obj_type), relation

    def create_types_shapes_values(self) -> Tuple[Tuple, Tuple, Tuple]:
        # (tokens, pos, ner, head, deprel, subj_positions, obj_positions, subj_type, obj_type), relation
        types = (tf.string, tf.string, tf.string, tf.int32, tf.string,
                 tf.int32, tf.int32, tf.string, tf.string), tf.string
        shapes = ([None], [None], [None], [None], [None], [None], [None], [],
                  []), []
        pads = (self.token_vocab.safe_pad_token, self.pos_vocab.safe_pad_token,
                self.ner_vocab.safe_pad_token, 0,
                self.deprel_vocab.safe_pad_token, 0, 0,
                self.ner_vocab.safe_pad_token,
                self.ner_vocab.safe_pad_token), self.rel_vocab.safe_pad_token
        return types, shapes, pads

    def x_to_idx(self, x) -> Union[tf.Tensor, Tuple]:
        tokens, pos, ner, head, deprel, subj_positions, obj_positions, subj_type, obj_type = x
        tokens = self.token_vocab.lookup(tokens)
        pos = self.pos_vocab.lookup(pos)
        ner = self.ner_vocab.lookup(ner)
        deprel = self.deprel_vocab.lookup(deprel)
        subj_type = self.ner_vocab.lookup(subj_type)
        obj_type = self.ner_vocab.lookup(obj_type)
        return tokens, pos, ner, head, deprel, subj_positions, obj_positions, subj_type, obj_type

    def y_to_idx(self, y) -> tf.Tensor:
        return self.rel_vocab.lookup(y)