示例#1
0
    def _exec_query(self) -> List[Tuple]:
        prop_filters, prop_filter_params = parse_prop_clauses(
            self._filter.properties, self._team.pk, prepend="global")

        # format default dates
        data = {}
        if not self._filter._date_from:
            data.update({"date_from": relative_date_parse("-7d")})
        if not self._filter._date_to:
            data.update({"date_to": timezone.now()})
        self._filter = Filter(data={**self._filter._data, **data})

        parsed_date_from, parsed_date_to, _ = parse_timestamps(
            filter=self._filter, table="events.", team_id=self._team.pk)
        self.params: Dict = {
            "team_id": self._team.pk,
            "events":
            [],  # purely a speed optimization, don't need this for filtering
            **prop_filter_params,
        }
        steps = [
            self._build_steps_query(entity, index)
            for index, entity in enumerate(self._filter.entities)
        ]
        query = FUNNEL_SQL.format(
            team_id=self._team.id,
            steps=", ".join(steps),
            filters=prop_filters.replace("uuid IN", "events.uuid IN", 1),
            parsed_date_from=parsed_date_from,
            parsed_date_to=parsed_date_to,
        )
        return sync_execute(query, self.params)
示例#2
0
    def _exec_query(self) -> List[Tuple]:
        prop_filters, prop_filter_params = parse_prop_clauses(
            self._filter.properties,
            self._team.pk,
            prepend="global",
            allow_denormalized_props=True)

        # format default dates
        data = {}
        if not self._filter._date_from:
            data.update({"date_from": relative_date_parse("-7d")})
        if not self._filter._date_to:
            data.update({"date_to": timezone.now()})
        self._filter = self._filter.with_data(data)

        parsed_date_from, parsed_date_to, _ = parse_timestamps(
            filter=self._filter, table="events.", team_id=self._team.pk)
        self.params.update(prop_filter_params)
        steps = [
            self._build_steps_query(entity, index)
            for index, entity in enumerate(self._filter.entities)
        ]
        query = FUNNEL_SQL.format(
            team_id=self._team.id,
            steps=", ".join(steps),
            filters=prop_filters.replace("uuid IN", "events.uuid IN", 1),
            parsed_date_from=parsed_date_from,
            parsed_date_to=parsed_date_to,
            top_level_groupby="",
            extra_select="",
            extra_groupby="",
            within_time="6048000000000000",
        )
        return sync_execute(query, self.params)
    def _exec_query(self) -> List[Tuple]:
        prop_filters, prop_filter_params = parse_prop_clauses(
            "uuid", self._filter.properties, self._team, prepend="global")

        # format default dates
        if not self._filter._date_from:
            self._filter._date_from = relative_date_parse("-7d")
        if not self._filter._date_to:
            self._filter._date_to = timezone.now()

        parsed_date_from, parsed_date_to = parse_timestamps(
            filter=self._filter)
        self.params: Dict = {"team_id": self._team.pk, **prop_filter_params}
        steps = [
            self._build_steps_query(entity, index)
            for index, entity in enumerate(self._filter.entities)
        ]
        query = FUNNEL_SQL.format(
            select_steps=",".join([
                "step_{}".format(index)
                for index, _ in enumerate(self._filter.entities)
            ]),
            team_id=self._team.id,
            steps=", ".join(steps),
            filters=prop_filters.replace("uuid IN", "events.uuid IN", 1),
            parsed_date_from=parsed_date_from,
            parsed_date_to=parsed_date_to,
        )
        return sync_execute(query, self.params)
示例#4
0
 def get_query(self, format_properties):
     return FUNNEL_SQL.format(**format_properties)
示例#5
0
    def _get_trends(self) -> List[Dict[str, Any]]:
        serialized: Dict[str, Any] = {
            "count": 0,
            "data": [],
            "days": [],
            "labels": []
        }
        prop_filters, prop_filter_params = parse_prop_clauses(
            self._filter.properties,
            self._team.pk,
            prepend="global",
            allow_denormalized_props=True)
        parsed_date_from, parsed_date_to, _ = parse_timestamps(
            filter=self._filter, table="events.", team_id=self._team.pk)
        self.params.update(prop_filter_params)
        steps = [
            self._build_steps_query(entity, index)
            for index, entity in enumerate(self._filter.entities)
        ]
        funnel_query = FUNNEL_SQL.format(
            team_id=self._team.id,
            steps=", ".join(steps),
            filters=prop_filters.replace("uuid IN", "events.uuid IN", 1),
            parsed_date_from=parsed_date_from,
            parsed_date_to=parsed_date_to,
            top_level_groupby=", date",
            extra_select="{}(timestamp) as date,".format(
                get_trunc_func_ch(self._filter.interval)),
            extra_groupby=",{}(timestamp)".format(
                get_trunc_func_ch(self._filter.interval)),
            within_time="86400000000",
        )
        results = sync_execute(funnel_query, self.params)
        parsed_results = []

        for result in results:
            temp = [item for item in result]
            temp[1] = datetime(
                result[1].year,
                result[1].month,
                result[1].day,
                getattr(result[1], "hour", 0),
                getattr(result[1], "minute", 0),
                getattr(result[1], "second", 0),
                tzinfo=pytz.utc,
            )
            parsed_results.append(temp)

        date_range = get_daterange(self._filter.date_from
                                   or parsed_results[0][1],
                                   self._filter.date_to,
                                   frequency=self._filter.interval)

        # Rejig the data from a row for each date and step to one row per date
        data_dict: Dict[datetime, Dict] = {}
        for item in parsed_results:
            if not data_dict.get(item[1]):
                data_dict[item[1]] = {
                    "date": item[1],
                    "total_people": item[2],
                    "count": 0
                }
            else:
                # the query gives people who made it to that step
                # so we need to count all the people from each step
                data_dict[item[1]]["total_people"] += item[2]
                data_dict[item[1]]["count"] = round(
                    item[2] / data_dict[item[1]]["total_people"] * 100)
        data_array = [value for _, value in data_dict.items()]

        if self._filter.interval == "week":
            for df in data_array:
                df["date"] -= timedelta(days=df["date"].weekday() + 1)
        elif self._filter.interval == "month":
            for df in data_array:
                df["date"] = df["date"].replace(day=1)
        for df in data_array:
            df["date"] = df["date"].isoformat()

        datewise_data = {d["date"]: d["count"] for d in data_array}
        values = [(key, datewise_data.get(key.isoformat(), 0))
                  for key in date_range]

        for data_item in values:
            serialized["days"].append(data_item[0])
            serialized["data"].append(data_item[1])
            serialized["labels"].append(
                format_label_date(data_item[0], self._filter.interval))
        return [serialized]