def find_best_annualized_usage_params(target_annualized_usage, model,
        start_params, params_to_change, weather_normal_source, n_guesses=100):

    best_params = start_params
    meter = AnnualizedUsageMeter(model=model, temperature_unit_str=TEMPERATURE_UNIT_STR)

    best_result = meter.evaluate_raw(model_params=best_params, weather_normal_source=weather_normal_source)
    best_ann_usage = best_result["annualized_usage"][0]

    for n in range(n_guesses):

        resolution = abs((target_annualized_usage - best_ann_usage) / target_annualized_usage)

        param_dict = best_params.to_dict()
        for param_name,scale_factor in params_to_change:
            current_value = param_dict[param_name]
            current_value = norm.rvs(param_dict[param_name], resolution * scale_factor)
            while current_value < 0:
                current_value = norm.rvs(param_dict[param_name], resolution * scale_factor)
            param_dict[param_name] = current_value

        model_params = model.param_type(param_dict)

        result = meter.evaluate_raw(model_params=model_params, weather_normal_source=weather_normal_source)
        ann_usage = result["annualized_usage"][0]

        if abs(target_annualized_usage - ann_usage) < abs(target_annualized_usage - best_ann_usage):

            diff = abs(target_annualized_usage - best_ann_usage)
            best_params = model_params
            best_ann_usage = ann_usage

    return best_params, best_ann_usage
示例#2
0
    def _generate_fuel_consumptions(self, weather_source,
            weather_normal_source, period, model, param_dists,
            param_delta_dists, noise, baseline_period, reporting_period,
            fuel_type, consumption_unit_name, temperature_unit_name):

        baseline_params = model.param_type([param.rvs() for param in param_dists.to_list()])
        reporting_params = model.param_type([bl_param + param_delta.rvs()
            for bl_param, param_delta in zip(baseline_params.to_list(), param_delta_dists.to_list())])

        annualized_usage_meter = AnnualizedUsageMeter(temperature_unit_name,
                model)
        baseline_annualized_usage = annualized_usage_meter.evaluate_raw(
                model_params=baseline_params,
                weather_normal_source=weather_normal_source)["annualized_usage"]
        reporting_annualized_usage = annualized_usage_meter.evaluate_raw(
                model_params=reporting_params,
                weather_normal_source=weather_normal_source)["annualized_usage"]
        estimated_annualized_savings = baseline_annualized_usage - \
                reporting_annualized_usage

        baseline_generator = MonthlyBillingConsumptionGenerator(fuel_type,
                consumption_unit_name, temperature_unit_name, model,
                baseline_params)
        reporting_generator = MonthlyBillingConsumptionGenerator(fuel_type,
                consumption_unit_name, temperature_unit_name, model,
                reporting_params)

        datetimes = generate_monthly_billing_datetimes(period, dist=None)

        baseline_consumption_data = baseline_generator.generate(
                weather_source, datetimes, daily_noise_dist=noise)
        reporting_consumption_data = reporting_generator.generate(
                weather_source, datetimes, daily_noise_dist=noise)

        baseline_data = baseline_consumption_data.data
        reporting_data = reporting_consumption_data.data
        periods = baseline_consumption_data.periods()

        records = []
        for bl_data, rp_data, period in zip(baseline_data, reporting_data,
                periods):
            if period in reporting_period:
                val = rp_data
            else:
                val = bl_data
            record = {"start": period.start, "end": period.end, "value": val}
            records.append(record)

        cd = ConsumptionData(records, fuel_type, consumption_unit_name,
                record_type="arbitrary")

        return cd, estimated_annualized_savings, baseline_params, \
                reporting_params
示例#3
0
def find_best_annualized_usage_params(target_annualized_usage,
                                      model,
                                      start_params,
                                      params_to_change,
                                      weather_normal_source,
                                      n_guesses=100):

    best_params = start_params
    meter = AnnualizedUsageMeter(model=model,
                                 temperature_unit_str=TEMPERATURE_UNIT_STR)

    best_result = meter.evaluate_raw(
        model_params=best_params, weather_normal_source=weather_normal_source)
    best_ann_usage = best_result["annualized_usage"][0]

    for n in range(n_guesses):

        resolution = abs((target_annualized_usage - best_ann_usage) /
                         target_annualized_usage)

        param_dict = best_params.to_dict()
        for param_name, scale_factor in params_to_change:
            current_value = param_dict[param_name]
            current_value = norm.rvs(param_dict[param_name],
                                     resolution * scale_factor)
            while current_value < 0:
                current_value = norm.rvs(param_dict[param_name],
                                         resolution * scale_factor)
            param_dict[param_name] = current_value

        model_params = model.param_type(param_dict)

        result = meter.evaluate_raw(
            model_params=model_params,
            weather_normal_source=weather_normal_source)
        ann_usage = result["annualized_usage"][0]

        if abs(target_annualized_usage -
               ann_usage) < abs(target_annualized_usage - best_ann_usage):

            diff = abs(target_annualized_usage - best_ann_usage)
            best_params = model_params
            best_ann_usage = ann_usage

    return best_params, best_ann_usage