#-------------------------------------# # 对单张图片进行预测 #-------------------------------------# from efficientdet import EfficientDet from PIL import Image efficientdet = EfficientDet() while True: img = input('Input image filename:') try: image = Image.open(img) except: print('Open Error! Try again!') continue else: r_image = efficientdet.detect_image(image) r_image.show()
tf.config.experimental.set_memory_growth(gpu, True) efficientdet = EfficientDet() capture = cv2.VideoCapture(0) # capture=cv2.VideoCapture("1.mp4") fps = 0.0 while (True): t1 = time.time() # 读取某一帧 ref, frame = capture.read() # 格式转变,BGRtoRGB frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转变成Image frame = Image.fromarray(np.uint8(frame)) # 进行检测 frame = np.array(efficientdet.detect_image(frame)) # RGBtoBGR满足opencv显示格式 frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) fps = (fps + (1. / (time.time() - t1))) / 2 print("fps= %.2f" % (fps)) frame = cv2.putText(frame, "fps= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.imshow("video", frame) c = cv2.waitKey(1) & 0xff if c == 27: capture.release() break
help='num img 2 show', default=1) parser.add_argument('-r', "--root", type=str, help='root dir filled with *.jpg') parser.add_argument('-i', "--filename", type=str, help='filename', default='') args = parser.parse_args() efficientdet = EfficientDet(args.model_path, args.version, args.conf, args.cuda) if args.num2show == 1: image = Image.open(os.path.join(args.root, args.filename)) res, cls, score = efficientdet.detect_image(image) print(cls, score) # r_image.show() else: print('结果将会保存到temp.png') files = os.listdir(args.root) idx = [ int(len(os.listdir(args.root)) * random.random()) for i in range(args.num2show) ] imgs = [Image.open(os.path.join(args.root, files[id])) for id in idx] ress, clss, scores = [], [], [] print(len(imgs)) for img in imgs: res, cls, score = efficientdet.detect_image(img)