示例#1
0
    def testRBFN_1D(self):

        # sample from a synthetic function and see how much we improve the
        # error by using the prior function
        def foo(x):
            return sum(sin(x * 20))

        X = lhcSample([[0., 1.]], 50, seed=3)
        Y = [foo(x) for x in X]

        prior = RBFNMeanPrior()
        prior.train(X, Y, [[0., 1.]], k=10, seed=100)

        # See how well we fit the function by getting the average squared error
        # over 100 samples of the function.  Baseline foo(x)=0 MSE is 0.48.
        # We will aim for MSE < 0.05.
        S = arange(0, 1, .01)
        error = mean([foo(x) - prior.mu(x) for x in S])
        self.failUnless(error < 0.05)

        # for debugging
        if False:
            figure(1)
            plot(S, [foo(x) for x in S], 'b-')
            plot(S, [prior.mu(x) for x in S], 'k-')
            show()
示例#2
0
    def testRBFN_1D(self):
        
        # sample from a synthetic function and see how much we improve the
        # error by using the prior function
        def foo(x):
            return sum(sin(x*20))
            
        X = lhcSample([[0., 1.]], 50, seed=3)
        Y = [foo(x) for x in X]
        
        prior = RBFNMeanPrior()
        prior.train(X, Y, [[0., 1.]], k=10, seed=100)
        
        # See how well we fit the function by getting the average squared error
        # over 100 samples of the function.  Baseline foo(x)=0 MSE is 0.48.
        # We will aim for MSE < 0.05.
        S = arange(0, 1, .01)
        error = mean([foo(x)-prior.mu(x) for x in S])
        self.failUnless(error < 0.05)

        # for debugging
        if False:
            figure(1)
            plot(S, [foo(x) for x in S], 'b-')
            plot(S, [prior.mu(x) for x in S], 'k-')
            show()
示例#3
0
    def testGPPrior(self):

        # see how GP works with the dataprior...
        def foo(x):
            return sum(sin(x * 20))

        bounds = [[0., 1.]]
        # train prior
        pX = lhcSample([[0., 1.]], 100, seed=6)
        pY = [foo(x) for x in pX]
        prior = RBFNMeanPrior()
        prior.train(pX, pY, bounds, k=10, seed=102)

        X = lhcSample([[0., 1.]], 2, seed=7)
        Y = [foo(x) for x in X]

        kernel = GaussianKernel_ard(array([.1]))
        GP = GaussianProcess(kernel, X, Y, prior=prior)
        GPnoprior = GaussianProcess(kernel, X, Y)

        S = arange(0, 1, .01)

        nopriorErr = mean([(foo(x) - GPnoprior.mu(x))**2 for x in S])
        priorErr = mean([(foo(x) - GP.mu(x))**2 for x in S])

        self.failUnless(priorErr < nopriorErr * .5)

        if False:
            figure(1)
            clf()
            plot(S, [prior.mu(x) for x in S], 'g-', alpha=0.3)
            plot(S, [GPnoprior.mu(x) for x in S], 'b-', alpha=0.3)
            plot(S, [GP.mu(x) for x in S], 'k-', lw=2)
            plot(X, Y, 'ko')
            show()
示例#4
0
    def testRNFN_10D(self):

        # as above, but with a 10D test function and more data
        def foo(x):
            return sum(sin(x * 2))

        bounds = [[0., 1.]] * 10
        X = lhcSample(bounds, 100, seed=4)
        Y = [foo(x) for x in X]

        prior = RBFNMeanPrior()
        prior.train(X, Y, bounds, k=20, seed=5)

        S = lhcSample(bounds, 100, seed=6)
        RBNError = mean([(foo(x) - prior.mu(x))**2 for x in S])
        baselineError = mean([foo(x)**2 for x in S])

        self.failUnless(RBNError < baselineError)
示例#5
0
 def testRNFN_10D(self):
     
     # as above, but with a 10D test function and more data
     def foo(x):
         return sum(sin(x*2))
         
     bounds = [[0., 1.]]*10
     X = lhcSample(bounds, 100, seed=4)
     Y = [foo(x) for x in X]
     
     prior = RBFNMeanPrior()
     prior.train(X, Y, bounds, k=20, seed=5)
     
     S = lhcSample(bounds, 100, seed=6)
     RBNError = mean([(foo(x)-prior.mu(x))**2 for x in S])
     baselineError = mean([foo(x)**2 for x in S])
     
     # print '\nRBN err  =', RBNError
     # print 'baseline =', baselineError
     self.failUnless(RBNError < baselineError)
示例#6
0
    def testGPPrior(self):
        
        # see how GP works with the dataprior...
        def foo(x):
            return sum(sin(x*20))
        
        bounds = [[0., 1.]]
        # train prior
        pX = lhcSample([[0., 1.]], 100, seed=6)
        pY = [foo(x) for x in pX]
        prior = RBFNMeanPrior()
        prior.train(pX, pY, bounds, k=10, seed=102)
        
        X = lhcSample([[0., 1.]], 2, seed=7)
        Y = [foo(x) for x in X]
        
        kernel = GaussianKernel_ard(array([.1]))
        GP = GaussianProcess(kernel, X, Y, prior=prior)
        GPnoprior = GaussianProcess(kernel, X, Y)

        S = arange(0, 1, .01)

        nopriorErr = mean([(foo(x)-GPnoprior.mu(x))**2 for x in S])
        priorErr = mean([(foo(x)-GP.mu(x))**2 for x in S])
        
        # print '\nno prior Err =', nopriorErr
        # print 'prior Err =', priorErr
        
        self.failUnless(priorErr < nopriorErr*.5)
        
        if False:
            figure(1)
            clf()
            plot(S, [prior.mu(x) for x in S], 'g-', alpha=0.3)
            plot(S, [GPnoprior.mu(x) for x in S], 'b-', alpha=0.3)
            plot(S, [GP.mu(x) for x in S], 'k-', lw=2)
            plot(X, Y, 'ko')
            show()