示例#1
0
    def testPriorAndPrefs(self):

        S5 = Shekel5()

        pX = lhcSample(S5.bounds, 100, seed=13)
        pY = [S5.f(x) for x in pX]
        prior = RBFNMeanPrior()
        prior.train(pX, pY, S5.bounds, k=10)

        hv = .1
        hyper = [hv, hv, hv, hv]
        gkernel = GaussianKernel_ard(hyper)
        GP = PrefGaussianProcess(gkernel, prior=prior)

        X = [array([i + .5] * 4) for i in range(5)]
        valX = [x.copy() for x in X]

        prefs = []
        for i in range(len(X)):
            for j in range(i):
                if S5.f(X[i]) > S5.f(X[j]):
                    prefs.append((X[i], X[j], 0))
                else:
                    prefs.append((X[j], X[i], 0))

        GP.addPreferences(prefs)
        opt, optx = maximizeEI(GP, S5.bounds)
示例#2
0
 def testFastGallery(self):
     
     tf = Hartman3()
     kernel = tf.createKernel(GaussianKernel_ard)
     X = lhcSample(tf.bounds, 10, seed=23)
     Y = [tf.f(x) for x in X]
     prefs = query2prefs(X, tf.f)
     
     GP = PrefGaussianProcess(kernel)
     GP.addPreferences(prefs)
 
     gallery = fastUCBGallery(GP, tf.bounds, 4)
     print 'gallery returned:'
     for x in gallery:
         print '\t', x
         
     GP.addPreferences(query2prefs(gallery, tf.f))
     
     # make sure we don't return anything out of bounds
     bounds = copy(tf.bounds)
     bounds[0] = [0., 0.]
     gallery = fastUCBGallery(GP, bounds, 4)        
     print 'gallery returned:'
     for x in gallery:
         print '\t', x
         for v, b in zip(x, bounds):
             self.failUnless(v>=b[0] and v<=b[1])
示例#3
0
 def testPriorAndPrefs(self):
     
     S5 = Shekel5()
     
     pX = lhcSample(S5.bounds, 100, seed=13)
     pY = [S5.f(x) for x in pX]
     prior = RBFNMeanPrior()
     prior.train(pX, pY, S5.bounds, k=10)
     
     hv = .1
     hyper = [hv, hv, hv, hv]
     gkernel = GaussianKernel_ard(hyper)
     GP = PrefGaussianProcess(gkernel, prior=prior)
     
     X = [array([i+.5]*4) for i in xrange(5)]
     valX = [x.copy() for x in X]
     
     prefs = []
     for i in xrange(len(X)):
         for j in xrange(i):
             if S5.f(X[i]) > S5.f(X[j]):
                 prefs.append((X[i], X[j], 0))
             else:
                 prefs.append((X[j], X[i], 0))
     
     GP.addPreferences(prefs)
     opt, optx = maximizeEI(GP, S5.bounds)
示例#4
0
文件: demo.py 项目: johnchia/IBO
def demoPrefGallery():
    """
    A simpler demo, showing how to use a preference gallery.  This demo
    is not interactive -- it uses the 6D Hartman test function to generate
    the preferences.
    """
    
    N = 3   # gallery size
    
    # use the Hartman6 test function, which has a kernel and bounds predefined
    tf = Hartman6()
    bounds = tf.bounds
    kernel = tf.createKernel(GaussianKernel_ard)
    
    # set up a Preference Gaussian Process, in which the observations are
    # preferences, rather than scalars
    GP = PrefGaussianProcess(kernel)
    
    # initial preferences -- since we have no informative prior on the space, 
    # the gallery will be a set of points that maximize variance
    gallery = fastUCBGallery(GP, bounds, N)
    
    # this is a utility function for automtically testing the preferences -- 
    # given a test functions and some sample points, it will return a list of 
    # preferences
    prefs = query2prefs(gallery, tf.f)
    
    # preferences have the form [r, c, degree], where r is preferred to c.  
    # degree is degree of preference.  Just leave degree at 0 for now.
    for r, c, _ in prefs:
        print '%s preferred to %s' % (r, c)
        
    # add preferences to the model
    GP.addPreferences(prefs)
    
    # get another gallery, but with the first three dimensions fixed to .5
    nbounds = deepcopy(bounds)
    nbounds[:3] = [[.5,.5]]*3
    
    gallery = fastUCBGallery(GP, nbounds, N)
    prefs = query2prefs(gallery, tf.f)
    for r, c, _ in prefs:
        print '%s preferred to %s' % (r, c)
    
    # get another gallery, but with the *last* three dimensions fixed to .5
    nbounds = deepcopy(bounds)
    nbounds[3:] = [[.5,.5]]*3

    gallery = fastUCBGallery(GP, nbounds, N)
    prefs = query2prefs(gallery, tf.f)
    for r, c, _ in prefs:
        print '%s preferred to %s' % (r, c)
    
    # preferences don't have to come from the gallery
    r = array([0, 0, .5, 0, 1, .25])
    c = array([1, 1, .75, 1, 0, .5])
    pref = (r, c, 0)
    GP.addPreferences([pref])
示例#5
0
def learn(request,pref=None,unpref=None,canvas_size=400):
    # set up
    if not request.session.has_key('session_id'):
        raise Exception('session_id not found in request.session')
    session = BanditProblemSession.objects.get(id=request.session['session_id'])
    problem = session.problem

    # push to database if needed
    if pref is not None and unpref is not None:
        pref = BanditContext.objects.get(id=pref)
        unpref = BanditContext.objects.get(id=unpref)
        pc = PairedComparison.objects.create(
            unpreferred_context=unpref,
            preferred_context=pref,
            session=session,
        )

    # now pull historical preferences
    gp = PrefGaussianProcess(GaussianKernel_iso([problem.length_scale, problem.noise_magnitude]))
    pcs = session.comparisons.all()
    if pcs is not None and len(pcs) > 0:
        gp.addPreferences([
            (pc.preferred_context.vector, pc.unpreferred_context.vector, 0)
            for pc in pcs ])

    # generate art (it just sounds wrong!!!)
    gal_db = {}
    gallery = fastUCBGallery(gp, [[0,1]]*problem.dim(), 2, useBest=True, xi=problem.xi,passback=gal_db)
    ctx1,_ = BanditContext.objects.get_or_create(dimension=len(gallery[0]),vector=gallery[0].tolist())
    ctx2,_ = BanditContext.objects.get_or_create(dimension=len(gallery[1]),vector=gallery[1].tolist())

    left_choice = problem.generate(ctx1, id='left')
    right_choice = problem.generate(ctx2, id='right')

    plots = _make_plots_from_gallery_passback(problem,gal_db)

    # ...
    t = loader.get_template('compare.html')
    c = Context({
        'left_choice': left_choice,
        'right_choice': right_choice,
        'context_1': ctx1,
        'context_2': ctx2,
        'problem': problem,
        'plots': json.dumps(plots),
    })
    return HttpResponse(t.render(c))
示例#6
0
    def testFastGallery(self):

        tf = Hartman3()
        kernel = tf.createKernel(GaussianKernel_ard)
        X = lhcSample(tf.bounds, 10, seed=23)
        Y = [tf.f(x) for x in X]
        prefs = query2prefs(X, tf.f)

        GP = PrefGaussianProcess(kernel)
        GP.addPreferences(prefs)

        gallery = fastUCBGallery(GP, tf.bounds, 4)
        print('gallery returned:')
        for x in gallery:
            print('\t', x)

        GP.addPreferences(query2prefs(gallery, tf.f))

        # make sure we don't return anything out of bounds
        bounds = copy(tf.bounds)
        bounds[0] = [0., 0.]
        gallery = fastUCBGallery(GP, bounds, 4)
        print('gallery returned:')
        for x in gallery:
            print('\t', x)
            for v, b in zip(x, bounds):
                self.failUnless(v >= b[0] and v <= b[1])
示例#7
0
文件: demo.py 项目: saadmahboob/IBO
def demoPrefGallery():
    """
    A simpler demo, showing how to use a preference gallery.  This demo
    is not interactive -- it uses the 6D Hartman test function to generate
    the preferences.
    """

    N = 3  # gallery size

    # use the Hartman6 test function, which has a kernel and bounds predefined
    tf = Hartman6()
    bounds = tf.bounds
    kernel = tf.createKernel(GaussianKernel_ard)

    # set up a Preference Gaussian Process, in which the observations are
    # preferences, rather than scalars
    GP = PrefGaussianProcess(kernel)

    # initial preferences -- since we have no informative prior on the space,
    # the gallery will be a set of points that maximize variance
    gallery = fastUCBGallery(GP, bounds, N)

    # this is a utility function for automtically testing the preferences --
    # given a test functions and some sample points, it will return a list of
    # preferences
    prefs = query2prefs(gallery, tf.f)

    # preferences have the form [r, c, degree], where r is preferred to c.
    # degree is degree of preference.  Just leave degree at 0 for now.
    for r, c, _ in prefs:
        print '%s preferred to %s' % (r, c)

    # add preferences to the model
    GP.addPreferences(prefs)

    # get another gallery, but with the first three dimensions fixed to .5
    nbounds = deepcopy(bounds)
    nbounds[:3] = [[.5, .5]] * 3

    gallery = fastUCBGallery(GP, nbounds, N)
    prefs = query2prefs(gallery, tf.f)
    for r, c, _ in prefs:
        print '%s preferred to %s' % (r, c)

    # get another gallery, but with the *last* three dimensions fixed to .5
    nbounds = deepcopy(bounds)
    nbounds[3:] = [[.5, .5]] * 3

    gallery = fastUCBGallery(GP, nbounds, N)
    prefs = query2prefs(gallery, tf.f)
    for r, c, _ in prefs:
        print '%s preferred to %s' % (r, c)

    # preferences don't have to come from the gallery
    r = array([0, 0, .5, 0, 1, .25])
    c = array([1, 1, .75, 1, 0, .5])
    pref = (r, c, 0)
    GP.addPreferences([pref])