def test_AdaptiveGrid(self): op_a_grid = selection.AdaptiveGrid( self.domain_shape_2D, np.random.randint(0, 1000, size=self.domain_shape_2D), 0.1) queries = op_a_grid.select() self.assertEqual(len(queries.shape), 2) self.assertEqual(queries.shape[1], 256)
def Run(self, W, x, eps, seed): assert len(x.shape) == 2, "Adaptive Grid only works for 2D domain" shape_2d = x.shape x = x.flatten() prng = np.random.RandomState(seed) Ms = [] ys = [] M = selection.UniformGrid(shape_2d, self.data_scale, eps, ag_flag=True, c=self.c).select() y = measurement.Laplace(M, self.alpha*eps).measure(x, prng) x_hat = inference.LeastSquares().infer(M, y) Ms.append(M) ys.append(y) # Prepare parition object for later SplitByParition. # This Partition selection operator is missing from Figure 2, plan 12 in the paper. uniform_mapping = mapper.UGridPartition(shape_2d, self.data_scale, eps, ag_flag=True, c=self.c).mapping() x_sub_list = meta.SplitByPartition(uniform_mapping).transform(x) sub_domains = support.get_subdomain_grid(uniform_mapping, shape_2d) ll, hi =[], [] for i in sorted(set(uniform_mapping)): x_i = x_sub_list[i] P_i = support.projection_matrix(uniform_mapping, i) x_hat_i = P_i * x_hat sub_domain_shape = sub_domains[i] M_i = selection.AdaptiveGrid(sub_domain_shape, x_hat_i, (1-self.alpha)*eps, c2=self.c2).select() y_i = measurement.Laplace(M_i, (1-self.alpha)*eps).measure(x_i, prng) offset = np.unravel_index(P_i.matrix.nonzero()[1][0], shape_2d) ll.extend(M_i._lower + np.array(offset)) hi.extend(M_i._higher + np.array(offset)) ys.append(y_i) Ms.append(workload.RangeQueries(shape_2d, np.array(ll), np.array(hi))) x_hat = inference.LeastSquares().infer(Ms, ys) return x_hat
def Run(self, W, x, eps, seed): assert len(x.shape) == 2, "Adaptive Grid only works for 2D domain" shape_2d = x.shape x = x.flatten() prng = np.random.RandomState(seed) Ms = [] ys = [] M = selection.UniformGrid(shape_2d, self.data_scale, eps, ag_flag=True, c=self.c).select() if not isinstance(M, np.ndarray): M = M.toarray() y = measurement.Laplace(M, self.alpha*eps).measure(x, prng) x_hat = inference.LeastSquares().infer(M, y) Ms.append(M) ys.append(y) # Prepare parition object for later SplitByParition. # This Partition selection operator is missing from Figure 2, plan 12 in the paper. uniform_mapping = mapper.UGridPartition(shape_2d, self.data_scale, eps, ag_flag=True, c=self.c).mapping() x_sub_list = meta.SplitByPartition(uniform_mapping).transform(x) sub_domains = support.get_subdomain_grid(uniform_mapping, shape_2d) for i in sorted(set(uniform_mapping)): x_i = x_sub_list[i] P_i = support.projection_matrix(uniform_mapping, i) x_hat_i = P_i * x_hat sub_domain_shape = sub_domains[i] M_i = selection.AdaptiveGrid(sub_domain_shape, x_hat_i, (1-self.alpha)*eps, c2=self.c2).select() if not isinstance(M, np.ndarray): M_i = M_i.toarray() y_i = measurement.Laplace(M_i, (1-self.alpha)*eps).measure(x_i, prng) M_i_o = M_i * P_i Ms.append(M_i_o) ys.append(y_i) x_hat = inference.LeastSquares().infer(Ms, ys, [1.0]*len(ys)) return x_hat