def Run(self, W, x, eps, seed): prng = np.random.RandomState(seed) M = selection.H2(x.shape).select() y = measurement.Laplace(M, eps).measure(x, prng) x_hat = inference.LeastSquares().infer(M, y) return x_hat
def test_H2(self): op_H2_1D = selection.H2(self.domain_shape_1D) queries = op_H2_1D.select() if sparse.issparse(queries): queries = queries.todense() self.assertEqual(queries.shape[0], 31) self.assertEqual(queries.shape[1], 16)
def Run(self, W, x, eps, seed): x = x.flatten() prng = np.random.RandomState(seed) M = selection.H2(self.domain_shape).select() if not isinstance(M, np.ndarray): M = M.toarray() y = measurement.Laplace(M, eps).measure(x, prng) x_hat = inference.LeastSquares().infer(M, y) return x_hat
def test_H2(self): op_H2_1D = selection.H2(self.domain_shape_1D) queries = op_H2_1D.select() self.assertEqual(queries.shape[0], 31) self.assertEqual(queries.shape[1], 16)