示例#1
0
    def ReportGradient(self, request, _):
        model_version_valid = self._validate_model_version(
            request.model_version
        )

        res = elasticdl_pb2.ReportGradientResponse()
        if not model_version_valid:
            logger.warning(
                "Task result for outdated version %d dropped",
                request.model_version,
            )
            res.accepted = False
            res.model_version = self._version
            return res

        # TODO: Update task queue with task_id
        with self._lock:
            tmp = {}
            indexed_grads = {}
            edl_embedding_gradients = {}
            # Do sanity check before accumulating gradients.
            for k, v in request.gradient.items():
                if k not in self._model:
                    if v.indices:
                        # grads of ElasticDL Embedding layer
                        # TODO: check arr.shape[1] = embedding_dim of this
                        # EdlEmbedding layer
                        arr = tensor_to_ndarray(v)
                        edl_embedding_gradients[k] = arr
                        continue
                    else:
                        raise ValueError(
                            "Gradient key: %s is not part of model", k
                        )

                arr = tensor_to_ndarray(v)
                if isinstance(arr, tf.IndexedSlices):
                    if arr.values.shape[1] != self._model[k].numpy().shape[1]:
                        raise ValueError(
                            "Gradient key: %s has incompatible "
                            "indexed slice dimension %d, expected %d"
                            % (
                                k,
                                arr.values.shape[1],
                                self._model[k].numpy().shape[1],
                            )
                        )

                    max_index = tf.math.reduce_max(arr.indices).numpy()
                    if max_index >= self._model[k].numpy().shape[0]:
                        raise ValueError(
                            "Gradient key: %s has wrong indices %d, "
                            "out of range %d"
                            % (
                                k,
                                max_index,
                                self._model[k].numpy().shape[0] - 1,
                            )
                        )
                    indexed_grads[k] = arr
                else:
                    if arr.shape != self._model[k].numpy().shape:
                        raise ValueError(
                            "Gradient key: %s has incompatible dimension", k
                        )
                    tmp[k] = arr

            # grads of ElasticDL Embedding layer
            for k, v in edl_embedding_gradients.items():
                if k in self._edl_embedding_gradients:
                    self._edl_embedding_gradients[k] = merge_indexed_slices(
                        self._edl_embedding_gradients[k], v
                    )
                else:
                    self._edl_embedding_gradients[k] = v

            # grads of Keras Embedding layer
            for k, v in indexed_grads.items():
                if k not in self._gradient_sum_indexed:
                    self._gradient_sum_indexed[k] = v
                else:
                    grads_s = self._gradient_sum_indexed[k]
                    self._gradient_sum_indexed[k] = merge_indexed_slices(
                        grads_s, v
                    )

            # other grads
            for k, v in tmp.items():
                if not self._use_async and k in self._gradient_sum:
                    self._gradient_sum[k] = self._gradient_sum[k] + v
                else:
                    self._gradient_sum[k] = v

            self._grad_n += 1
            if self._use_async or self._grad_n >= self._grad_to_wait:
                self._update_model()
                self._update_evaluation()
                self._update_checkpoint()

        res.accepted = True
        res.model_version = self._version
        return res
示例#2
0
    def ReportGradient(self, request, _):
        model_version_valid = self._use_async or self._validate_model_version(
            request.model_version
        )

        res = elasticdl_pb2.ReportGradientResponse()
        if not model_version_valid:
            logger.warning(
                "Task result for outdated version %d dropped",
                request.model_version,
            )
            res.accepted = False
            res.model_version = self._version
            return res

        tmp = {}
        indexed_grads = {}
        edl_embedding_gradients = {}
        # Do sanity check before accumulating gradients.
        for k, v in request.gradient.items():
            if k not in self._model:
                if v.indices:
                    # grads of ElasticDL Embedding layer
                    # TODO: check arr.shape[1] = embedding_dim of this
                    # EdlEmbedding layer
                    arr = tensor_to_ndarray(v)
                    edl_embedding_gradients[k] = arr
                    continue
                else:
                    raise ValueError(
                        "Gradient key: %s is not part of model", k
                    )

            arr = tensor_to_ndarray(v)
            if isinstance(arr, tf.IndexedSlices):
                if arr.values.shape[1] != self._model[k].numpy().shape[1]:
                    raise ValueError(
                        "Gradient key: %s has incompatible "
                        "indexed slice dimension %d, expected %d"
                        % (
                            k,
                            arr.values.shape[1],
                            self._model[k].numpy().shape[1],
                        )
                    )

                max_index = tf.math.reduce_max(arr.indices).numpy()
                if max_index >= self._model[k].numpy().shape[0]:
                    raise ValueError(
                        "Gradient key: %s has wrong indices %d, "
                        "out of range %d"
                        % (k, max_index, self._model[k].numpy().shape[0] - 1)
                    )
                indexed_grads[k] = arr
            else:
                if arr.shape != self._model[k].numpy().shape:
                    raise ValueError(
                        "Gradient key: %s has incompatible dimension", k
                    )
                tmp[k] = arr

        if not self._use_async:
            self._lock.acquire()
        self._process_gradients(
            edl_embedding_gradients, indexed_grads, tmp, request.model_version
        )
        if not self._use_async:
            self._lock.release()

        res.accepted = True
        res.model_version = self._version
        return res
示例#3
0
    def ReportGradient(self, request, _):
        model_version_valid = self._use_async or self._validate_model_version(
            request.model_version)

        res = elasticdl_pb2.ReportGradientResponse()
        if not model_version_valid:
            logger.warning(
                "Task result for outdated version %d dropped",
                request.model_version,
            )
            res.accepted = False
            res.model_version = self._version
            return res

        non_embedding_gradients = {}
        indexed_grads = {}
        edl_embedding_gradients = {}
        # Do sanity check before accumulating gradients.
        for v in request.gradient:
            tensor = Tensor.from_tensor_pb(v)
            name = tensor.name
            if name not in self._model:
                if tensor.is_indexed_slices():
                    # grads of ElasticDL Embedding layer
                    # TODO: check arr.shape[1] = embedding_dim of this
                    # EdlEmbedding layer
                    edl_embedding_gradients[name] = tensor.to_tf_tensor()
                    continue
                else:
                    raise ValueError("Gradient key: %s is not part of model",
                                     name)

            if tensor.is_indexed_slices():
                if (tensor.values.shape[1] !=
                        self._model[name].numpy().shape[1]):
                    raise ValueError(
                        "Gradient key: %s has incompatible "
                        "indexed slice dimension %d, expected %d" % (
                            name,
                            tensor.values.shape[1],
                            self._model[name].numpy().shape[1],
                        ))

                max_index = tf.math.reduce_max(tensor.indices).numpy()
                if max_index >= self._model[name].numpy().shape[0]:
                    raise ValueError(
                        "Gradient key: %s has wrong indices %d, "
                        "out of range %d" % (
                            name,
                            max_index,
                            self._model[name].numpy().shape[0] - 1,
                        ))
                indexed_grads[name] = tensor.to_tf_tensor()
            else:
                if tensor.values.shape != self._model[name].numpy().shape:
                    raise ValueError(
                        "Gradient key: %s has incompatible dimension", name)
                non_embedding_gradients[name] = tensor.to_tf_tensor()

        if not self._use_async:
            self._lock.acquire()
        self._process_gradients(
            edl_embedding_gradients,
            indexed_grads,
            non_embedding_gradients,
            request.model_version,
        )
        if not self._use_async:
            self._lock.release()

        res.accepted = True
        res.model_version = self._version
        return res