def _create_master_and_worker(self, service_endpoint=None, embedding_dims={}): model_inst = custom_model() master = MasterServicer( 2, 2, tf.optimizers.SGD(0.1), None, init_var=model_inst.trainable_variables, embedding_service_endpoint=service_endpoint, embedding_dims=embedding_dims, checkpoint_filename_for_init=None, checkpoint_service=None, evaluation_service=None, ) worker = Worker( 1, JobType.TRAINING_ONLY, 2, _model_zoo_path, model_def="test_module.custom_model", channel=None, ) worker.set_model(model_inst) worker._stub = InProcessMaster(master) return master, worker
def _create_master_and_worker(self, service_endpoint=None, embedding_dims={}): model_inst = custom_model() master = MasterServicer( 2, 2, tf.optimizers.SGD(0.1), None, init_var=model_inst.trainable_variables, embedding_service_endpoint=service_endpoint, embedding_dims=embedding_dims, checkpoint_filename_for_init=None, checkpoint_service=None, evaluation_service=None, ) arguments = [ "--worker_id", 1, "--job_type", JobType.TRAINING_ONLY, "--minibatch_size", 2, "--model_zoo", _model_zoo_path, "--model_def", "test_module.custom_model", ] args = parse_worker_args(arguments) worker = Worker(args) worker.set_model(model_inst) worker._stub = InProcessMaster(master) return master, worker
def distributed_train_and_evaluate( feature_shape, model_zoo_path, model_def, model_params="", eval_metrics_fn="eval_metrics_fn", loss="loss", training=True, dataset_name=DatasetName.IMAGE_DEFAULT, callback_classes=[], use_async=False, get_model_steps=1, ps_channels=None, pservers=None, distribution_strategy=DistributionStrategy.PARAMETER_SERVER, ): """Runs distributed training and evaluation with a local master. Grpc calls are mocked by local master call. Args: feature_shape: The shape of model input. model_zoo_path: The directory that contains user-defined model files or a specific model file. model_def: The import path to the model definition function/class in the model zoo, e.g. "cifar10_subclass.CustomModel". model_params: The dictionary of model parameters in a string that will be used to instantiate the model, e.g. "param1=1,param2=2". eval_metrics_fn: The name of the evaluation metrics function defined in the model file. loss: The name of the loss function defined in the model file. training: True for job type `TRAIN_WITH_EVALUATION`, False for job type `EVALUATION`. dataset_name: A dataset name from `DatasetName`. callback_classes: A List of callbacks that will be called at given stages of the training procedure. use_async: A bool. True if using asynchronous updates. get_model_steps: Worker will perform `get_model` from the parameter server every this many steps. ps_channels: A channel list to all parameter server pods. pservers: A list of parameter server pods. distribution_strategy: The distribution startegy used by workers, e.g. DistributionStrategy.PARAMETER_SERVER or DistributionStrategy.AllreduceStrategy. Returns: An integer indicating the model version after the distributed training and evaluation. """ job_type = (JobType.TRAINING_WITH_EVALUATION if training else JobType.EVALUATION_ONLY) evaluation_steps = 1 if job_type == JobType.TRAINING_WITH_EVALUATION else 0 batch_size = 8 if dataset_name == DatasetName.IMAGENET else 16 pservers = pservers or [] ps_channels = ps_channels or [] model_module = load_module(get_module_file_path(model_zoo_path, model_def)).__dict__ for channel in ps_channels: grpc.channel_ready_future(channel).result() worker_arguments = [ "--worker_id", "1", "--job_type", job_type, "--minibatch_size", batch_size, "--model_zoo", model_zoo_path, "--model_def", model_def, "--model_params", model_params, "--loss", loss, "--get_model_steps", get_model_steps, "--distribution_strategy", distribution_strategy, ] args = parse_worker_args(worker_arguments) worker = Worker(args, ps_channels=ps_channels) if dataset_name in [DatasetName.IMAGENET, DatasetName.FRAPPE]: record_num = batch_size else: record_num = 128 shards = { create_recordio_file(record_num, dataset_name, feature_shape): ( 0, record_num, ) } if training: training_shards = shards evaluation_shards = shards else: training_shards = {} evaluation_shards = shards task_d = _TaskDispatcher( training_shards, evaluation_shards, {}, records_per_task=64, num_epochs=1, ) if training: evaluation_service = EvaluationService( None, task_d, 0, 0, evaluation_steps, False, model_module[eval_metrics_fn], ) else: evaluation_service = EvaluationService( None, task_d, 0, 0, evaluation_steps, True, model_module[eval_metrics_fn], ) task_d.set_evaluation_service(evaluation_service) master = MasterServicer( batch_size, task_d, evaluation_service=evaluation_service, ) callbacks = [ callback_class(master, worker) for callback_class in callback_classes ] in_process_master = InProcessMaster(master, callbacks) worker._stub = in_process_master for pservicer in pservers: pservicer._master_stub = in_process_master worker.run() req = elasticdl_pb2.GetTaskRequest() req.worker_id = 1 task = master.get_task(req, None) # No more task. if task.shard_name: raise RuntimeError( "There are some tasks unfinished after worker exits.") return master._version
def distributed_train_and_evaluate( feature_shape, model_zoo_path, model_def, model_params="", eval_metrics_fn="eval_metrics_fn", training=True, dataset_name=DatasetName.IMAGE_DEFAULT, callback_classes=[], use_async=False, get_model_steps=1, ): """Runs distributed training and evaluation with a local master. Grpc calls are mocked by local master call. Args: feature_shape: The shape of model input. model_zoo_path: The directory that contains user-defined model files or a specific model file. model_def: The import path to the model definition function/class in the model zoo, e.g. "cifar10_subclass.CustomModel". model_params: The dictionary of model parameters in a string that will be used to instantiate the model, e.g. "param1=1,param2=2". training: True for job type `TRAIN_WITH_EVALUATION`, False for job type `EVALUATION`. dataset_name: A dataset name from `DatasetName`. callback_classes: A List of callbacks that will be called at given stages of the training procedure. use_async: A python bool. True if using asynchronous updates. get_model_steps: Worker will perform `get_model` from the parameter server every this many steps. Returns: An integer indicating the model version after the distributed training and evaluation. """ job_type = (JobType.TRAINING_WITH_EVALUATION if training else JobType.EVALUATION_ONLY) batch_size = 8 if dataset_name == DatasetName.IMAGENET else 16 arguments = [ "--worker_id", "1", "--job_type", job_type, "--minibatch_size", batch_size, "--model_zoo", model_zoo_path, "--model_def", model_def, "--model_params", model_params, "--get_model_steps", get_model_steps, ] args = parse_worker_args(arguments) worker = Worker(args) if dataset_name in [DatasetName.IMAGENET, DatasetName.FRAPPE]: record_num = batch_size else: record_num = 128 shards = { create_recordio_file(record_num, dataset_name, feature_shape): ( 0, record_num, ) } if training: training_shards = shards evaluation_shards = shards else: training_shards = {} evaluation_shards = shards task_d = _TaskDispatcher( training_shards, evaluation_shards, {}, records_per_task=64, num_epochs=1, ) model_module = load_module(get_module_file_path(model_zoo_path, model_def)).__dict__ checkpoint_service = CheckpointService("", 0, 0, True) if training: evaluation_service = EvaluationService( checkpoint_service, None, task_d, 0, 0, 1, False, model_module[eval_metrics_fn], ) else: evaluation_service = EvaluationService( checkpoint_service, None, task_d, 0, 0, 0, True, model_module[eval_metrics_fn], ) task_d.set_evaluation_service(evaluation_service) grads_to_wait = 1 if use_async else 2 master = MasterServicer( grads_to_wait, batch_size, worker._opt_fn(), task_d, init_var=[], checkpoint_filename_for_init="", checkpoint_service=checkpoint_service, evaluation_service=evaluation_service, use_async=use_async, ) callbacks = [ callback_class(master, worker) for callback_class in callback_classes ] worker._stub = InProcessMaster(master, callbacks) for var in worker._model.trainable_variables: master.set_model_var(var.name, var.numpy()) worker.run() req = elasticdl_pb2.GetTaskRequest() req.worker_id = 1 task = master.GetTask(req, None) # No more task. if task.shard_name: raise RuntimeError( "There are some tasks unfinished after worker exits.") return master._version
def test_train_acceleration_with_embedding(self): kv_store = MockKvStore() model_inst = CustomModel() master = MasterServicer( 2, 2, tf.optimizers.SGD(0.1), None, init_var=model_inst.trainable_variables, checkpoint_filename_for_init=None, checkpoint_service=None, evaluation_service=None, ) arguments = [ "--worker_id", 1, "--job_type", JobType.TRAINING_ONLY, "--minibatch_size", 32, "--model_zoo", _model_zoo_path, "--model_def", "embedding_test_module.EdlEmbeddingModel", ] args = parse_worker_args(arguments) worker = Worker(args) worker._stub = InProcessMaster(master) inputs_list = [ { "f1": tf.constant([[0], [1], [2]], tf.int64), "f2": tf.constant([[2], [1], [0]], tf.int64), }, { "f1": tf.constant([[3], [4], [3]], tf.int64), "f2": tf.constant([[2], [1], [0]], tf.int64), }, ] labels_list = [[0, 1, 0], [1, 1, 0]] input_dim = 5 embedding_dim = 16 worker.set_model(model_inst) # initialize kv store for layer in model_inst.layers: if isinstance(layer, Embedding): name = layer.name keys = [Embedding.get_key([name, i]) for i in range(input_dim)] values = [ np.random.rand(embedding_dim).astype(np.float32) for i in range(input_dim) ] kv_store.update(keys, values) with mock.patch.object( EmbeddingService, "lookup_embedding", kv_store.lookup ), mock.patch.object( EmbeddingService, "update_embedding", kv_store.update ): worker._init_embedding_layer() worker._run_model_call_before_training(inputs_list[0]) # run training process without tf.function correct_grads = [] correct_ids_list = [] for features, labels in zip(inputs_list, labels_list): loss, grads = worker.training_process_eagerly(features, labels) correct_grads.append(grads) ids = {} for layer in worker._embedding_layers: ids[layer.name] = layer.embedding_and_ids[0].batch_ids correct_ids_list.append(ids) worker._reset_embedding() # run training process with tf.function test_grads = [] test_ids_list = [] for features, labels in zip(inputs_list, labels_list): self.assertFalse(worker._train_eagerly) loss, grads = worker.training_process(features, labels) test_grads.append(grads) ids = {} for layer in worker._embedding_layers: ids[layer.name] = copy.deepcopy( layer.embedding_and_ids[0].batch_ids ) test_ids_list.append(ids) worker._reset_embedding() # compare the gradients for test_g, correct_g in zip(test_grads, correct_grads): for g1, g2 in zip(test_g, correct_g): if isinstance(g1, tf.IndexedSlices): self.assertTrue(np.isclose(g1.values, g2.values).all()) self.assertTrue(np.isclose(g1.indices, g2.indices).all()) else: self.assertTrue(np.isclose(g1, g2).all()) for test_ids, correct_ids in zip(correct_ids_list, test_ids_list): for layer_name in correct_ids.keys(): self.assertTrue( tf.equal(test_ids[layer_name], correct_ids[layer_name]) .numpy() .all() )
def distributed_train_and_evaluate( self, feature_shape, model_def, model_params="", training=True, dataset="", ): """ Run distributed training and evaluation with a local master. grpc calls are mocked by local master call. """ job_type = (JobType.TRAINING_ONLY if training else JobType.EVALUATION_ONLY) batch_size = 16 worker = Worker( 1, job_type, batch_size, _model_zoo_path, model_def=model_def, model_params=model_params, channel=None, ) if dataset == "imagenet": batch_size = 8 shards = {create_imagenet_recordio_file(8, feature_shape): (0, 8)} elif dataset == "frappe": shards = { create_frappe_recordio_file(16, feature_shape, 5383): (0, 16) } else: shards = {create_recordio_file(128, feature_shape): (0, 128)} if training: training_shards = shards evaluation_shards = shards else: training_shards = {} evaluation_shards = shards task_d = _TaskDispatcher( training_shards, evaluation_shards, {}, records_per_task=64, num_epochs=1, ) # Initialize checkpoint service checkpoint_service = CheckpointService("", 0, 0, True) if training: evaluation_service = EvaluationService(checkpoint_service, None, task_d, 0, 0, 1, False) else: evaluation_service = EvaluationService(checkpoint_service, None, task_d, 0, 0, 0, True) task_d.set_evaluation_service(evaluation_service) # The master service master = MasterServicer( 2, batch_size, worker._opt_fn(), task_d, init_var=[], checkpoint_filename_for_init="", checkpoint_service=checkpoint_service, evaluation_service=evaluation_service, ) worker._stub = InProcessMaster(master) for var in worker._model.trainable_variables: master.set_model_var(var.name, var.numpy()) worker.run() req = elasticdl_pb2.GetTaskRequest() req.worker_id = 1 task = master.GetTask(req, None) # No more task. self.assertTrue(not task.shard_name)
def testMaxCheckpointVersions(self): with tempfile.TemporaryDirectory() as tempdir: chkp_dir = os.path.join(tempdir, "testMaxCheckpointVersions") os.makedirs(chkp_dir) # Save checkpoints every 2 steps, and keep 5 checkpoints at most checkpointer = CheckpointService(chkp_dir, 2, 5, False) self.assertTrue(checkpointer.is_enabled()) batch_size = 2 # Launch the training arguments = [ "--worker_id", 1, "--job_type", JobType.TRAINING_ONLY, "--minibatch_size", batch_size, "--model_zoo", _model_zoo_path, "--model_def", "test_module.custom_model", ] args = parse_worker_args(arguments) worker = Worker(args) filename = create_recordio_file(128, DatasetName.TEST_MODULE, 1) task_d = _TaskDispatcher({filename: (0, 128)}, {}, {}, records_per_task=64, num_epochs=1) master = MasterServicer( 2, batch_size, worker._opt_fn(), task_d, init_var=worker._model.trainable_variables, checkpoint_filename_for_init="", checkpoint_service=checkpointer, evaluation_service=None, ) worker._stub = InProcessMaster(master) worker.run() # We should have 5 checkpoints when the training finishes checkpoint_files = sorted(os.listdir(checkpointer._directory)) self.assertEqual( checkpoint_files, [ "model_v24.chkpt", "model_v26.chkpt", "model_v28.chkpt", "model_v30.chkpt", "model_v32.chkpt", ], ) # Latest version should be 32 self.assertEqual(32, checkpointer.get_latest_checkpoint_version()) # Check all checkpoints for version in [24, 26, 28, 30, 32]: model = checkpointer.get_checkpoint_model(version) self.assertEqual(version, model.version) # Checkpoint not found self.assertRaisesRegex( RuntimeError, "Failed to read model checkpoint from file", checkpointer.get_checkpoint_model, 100, )
def distributed_train_and_evaluate( self, training=True, callback_classes=[], use_async=False, grads_to_wait=2, get_model_steps=1, ): """ Run distributed training and evaluation with a local master. grpc calls are mocked by local master call. """ if use_async and grads_to_wait > 1: raise ValueError( "grads_to_wait should be 1 when using asynchronous SGD." ) job_type = ( JobType.TRAINING_ONLY if training else JobType.EVALUATION_ONLY ) batch_size = 16 worker = Worker( 1, job_type, batch_size, _model_zoo_path, model_def="test_module.custom_model", channel=None, get_model_steps=get_model_steps, ) shards = {create_recordio_file(128): (0, 128)} if training: training_shards = shards evaluation_shards = {} else: training_shards = {} evaluation_shards = shards task_d = _TaskDispatcher( training_shards, evaluation_shards, {}, records_per_task=64, num_epochs=1, ) if not training: evaluation_service = EvaluationService( None, None, task_d, 0, 0, 0, True ) task_d.set_evaluation_service(evaluation_service) else: evaluation_service = None master = MasterServicer( grads_to_wait, batch_size, worker._opt_fn(), task_d, init_var=[], checkpoint_filename_for_init="", checkpoint_service=None, evaluation_service=evaluation_service, use_async=use_async, ) callbacks = [ callback_class(master, worker, self) for callback_class in callback_classes ] worker._stub = InProcessMaster(master, callbacks) for var in worker._model.trainable_variables: master.set_model_var(var.name, var.numpy()) worker.run() req = elasticdl_pb2.GetTaskRequest() req.worker_id = 1 task = master.GetTask(req, None) # No more task. self.assertTrue(not task.shard_name)