示例#1
0
文件: models.py 项目: yorkerlin/elbow
def build_column_stds(shape, settings, name):
    N, K = shape

    if settings.gaussian_auto_ard:
        prec_dim = K

        logstd_mean = Gaussian(mean=0.0,
                               std=1.0,
                               shape=(1, ),
                               dtype=np.float32,
                               name="%s_logstd_mean" % name)
        logstd_logstd = Gaussian(mean=0.0,
                                 std=1.0,
                                 shape=(1, ),
                                 dtype=np.float32,
                                 name="%s_logstd_logstd" % name)
        logstd_std = DeterministicTransform(logstd_logstd,
                                            transforms.Exp,
                                            name="%s_logstd_std" % name)

        # model column stds as drawn from a lognormal distribution with inferred mean and std.
        # this allows for ARD if we infer a high variance on the column stds, but cheaply
        # specializes to the case where all column variances are the same
        logstd = Gaussian(mean=logstd_mean,
                          std=logstd_std,
                          shape=(prec_dim, ),
                          dtype=np.float32,
                          name="%s_logstd" % name)
        std = DeterministicTransform(logstd,
                                     transforms.Exp,
                                     name="%s_std" % name)
    else:
        std = settings.constant_gaussian_std

    return std
示例#2
0
文件: modular.py 项目: yinsenm/elbow
def gaussian_lowrank_model():

    A = Gaussian(mean=0.0, std=1.0, shape=(100, 3), name="A")
    B = Gaussian(mean=0.0, std=1.0, shape=(100, 3), name="B")
    C = NoisyGaussianMatrixProduct(A=A, B=B, std=0.1, name="C")


    sampled_C = C.sample(seed=0)
    C.observe(sampled_C)

    jm = Model(C)
    return jm
示例#3
0
文件: models.py 项目: yorkerlin/elbow
def build_gaussian(shape, settings, name, local=False):
    N, K = shape

    col_stds = build_column_stds(shape, settings, name)

    G = Gaussian(mean=0.0, std=col_stds, name=name, shape=shape, local=local)

    return G
示例#4
0
def build_vae(d_z=2, d_hidden=256, d_x=784, N=100, total_N=60000):

    # MODEL
    z = Gaussian(mean=0, std=1.0, shape=(N, d_z), name="z", local=True)
    X = neural_bernoulli(z, d_hidden=d_hidden, d_out=d_x, name="X", local=True)

    # OBSERVED DATA
    x_placeholder = X.observe_placeholder()

    # VARIATIONAL MODEL
    q_z = neural_gaussian(X=x_placeholder,
                          d_hidden=d_hidden,
                          d_out=d_z,
                          name="q_z")
    z.attach_q(q_z)

    jm = Model(X, minibatch_ratio=total_N / float(N))
    return jm, x_placeholder
示例#5
0
文件: modular.py 项目: yinsenm/elbow
def gaussian_randomwalk_model():

    A = Gaussian(mean=0.0, std=1.0, shape=(100, 2), name="A")
    C = NoisyCumulativeSum(A=A, std=0.1, name="C")

    sampled_C = C.sample(seed=0)
    C.observe(sampled_C)
    jm = Model(C)
    
    return jm
示例#6
0
文件: modular.py 项目: yinsenm/elbow
def autoencoder():
    d_z = 2
    d_hidden=256
    d_x = 28*28
    N=100

    from util import get_mnist
    Xdata, ydata = get_mnist()
    Xbatch = tf.constant(np.float32(Xdata[0:N]))

    z = Gaussian(mean=0, std=1.0, shape=(N,d_z), name="z")
    X = neural_bernoulli(z, d_hidden=d_hidden, d_out=d_x, name="X")

    X.observe(Xbatch)
    q_z = neural_gaussian(X=Xbatch, d_hidden=d_hidden, d_out=d_z, name="q_z")
    z.attach_q(q_z)

    jm = Model(X)
    
    return jm
示例#7
0
文件: modular.py 项目: yinsenm/elbow
def sparsity():
    G1 = Gaussian(mean=0, std=1.0, shape=(100,10), name="G1")
    expG1 = UnaryTransform(G1, Exp, name="expG1")
    X = MultiplicativeGaussianNoise(expG1, 1.0, name="X")

    sampled_X = X.sample(seed=0)
    X.observe(sampled_X)

    jm = Model(X)
    
    return jm
示例#8
0
def neural_gaussian(X, d_hidden, d_out, shape=None, name=None, **kwargs):
    augmented_shape = (2, ) + shape if shape is not None else None
    encoder = NeuralGaussianTransform(X,
                                      d_hidden,
                                      d_out,
                                      shape=augmented_shape,
                                      name=None,
                                      **kwargs)
    means, stds = unpackRV(encoder)

    shape = means.shape
    return Gaussian(mean=means, std=stds, shape=shape, name=name)
示例#9
0
文件: modular.py 项目: yinsenm/elbow
def gaussian_mean_model():

    mu = Gaussian(mean=0, std=10, shape=(1,), name="mu")
    X = Gaussian(mean=mu, std=1, shape=(100,), name="X")

    sampled_X = X.sample(seed=0)
    X.observe(sampled_X)

    jm = Model(X)
    return jm
示例#10
0
文件: modular.py 项目: yinsenm/elbow
def latent_feature_model():
    K = 3
    D = 10
    N = 100

    a, b = np.float32(1.0), np.float32(1.0)

    pi = BetaMatrix(alpha=a, beta=b, shape=(K,), name="pi")
    B = BernoulliMatrix(p=pi, shape=(N, K), name="B")
    G = Gaussian(mean=0.0, std=1.0, shape=(K, D), name="G")
    D = NoisyLatentFeatures(B=B, G=G, std=0.1, name="D")
        
    sampled_D = D.sample(seed=0)
    D.observe(sampled_D)
    jm = Model(D)

    return jm
示例#11
0
文件: modular.py 项目: yinsenm/elbow
def clustering_gmm_model(n_clusters = 4,
                         cluster_center_std = 5.0,
                         cluster_spread_std = 2.0,
                         n_points = 500,
                         dim = 2):


    centers = Gaussian(mean=0.0, std=cluster_center_std, shape=(n_clusters, dim), name="centers")
    weights = DirichletMatrix(alpha=1.0,
                              shape=(n_clusters,),
                              name="weights")
    X = GMMClustering(weights=weights, centers=centers,
                      std=cluster_spread_std, shape=(n_points, dim), name="X")

    sampled_X = X.sample(seed=0)
    X.observe(sampled_X)

    jm = Model(X)
    return jm
示例#12
0
    def _inference_networks(self, q_result):

        batch_users, n_traits = self.input_shapes["A"]
        n_items, n_traits2 = self.input_shapes["B"]
        assert (n_traits == n_traits2)

        observed_ratings = q_result._sampled
        mask = self.mask
        means, stds, weights = build_trait_network(
            observed_ratings,
            mask,
            n_traits=n_traits,
            weights=self.inference_weights)
        self.inference_weights = weights

        q_A = Gaussian(mean=means,
                       std=stds,
                       shape=(batch_users, n_traits),
                       name="q_neural_" + self.inputs_random["A"].name)

        return {"A": q_A}
示例#13
0
 def default_q(self):
     return Gaussian(shape=self.shape, name="q_" + self.name)