示例#1
0
    def test_compute_compensated_selection_failure(self):
        # Arrange
        available_guardian = self.guardians[0]
        missing_guardian = self.guardians[2]

        first_selection = [
            selection for contest in self.ciphertext_tally.contests.values()
            for selection in contest.selections.values()
        ][0]

        # Act
        # Get backup for missing guardian instead of one sent by guardian
        incorrect_backup = available_guardian.share_election_partial_key_backup(
            missing_guardian.id)

        result = compute_compensated_decryption_share_for_selection(
            available_guardian.share_election_public_key(),
            available_guardian._auxiliary_keys,
            missing_guardian.share_election_public_key(),
            incorrect_backup,
            first_selection,
            self.context,
            identity_auxiliary_decrypt,
        )

        # Assert
        self.assertIsNone(result)
    def test_compute_compensated_selection_failure(self):
        # Arrange
        first_selection = [
            selection
            for contest in self.ciphertext_tally.cast.values()
            for selection in contest.tally_selections.values()
        ][0]

        # Act
        self.guardians[0]._guardian_election_partial_key_backups.pop(
            self.guardians[2].object_id
        )

        self.assertIsNone(
            self.guardians[0].recovery_public_key_for(self.guardians[2].object_id)
        )

        result = compute_compensated_decryption_share_for_selection(
            self.guardians[0],
            self.guardians[2].object_id,
            first_selection,
            self.context,
            identity_auxiliary_decrypt,
        )

        # Assert
        self.assertIsNone(result)
    def test_compute_compensated_selection(self):
        """
        demonstrates the complete workflow for computing a comepnsated decryption share
        For one selection. It is useful for verifying that the workflow is correct
        """
        # Arrange
        first_selection = [
            selection for contest in self.ciphertext_tally.cast.values()
            for selection in contest.tally_selections.values()
        ][0]

        # Compute lagrange coefficients for the guardians that are present
        lagrange_0 = compute_lagrange_coefficient(
            self.guardians[0].sequence_order,
            *[self.guardians[1].sequence_order],
        )
        lagrange_1 = compute_lagrange_coefficient(
            self.guardians[1].sequence_order,
            *[self.guardians[0].sequence_order],
        )

        print(
            f"lagrange: sequence_orders: ({self.guardians[0].sequence_order}, {self.guardians[1].sequence_order}, {self.guardians[2].sequence_order})\n"
        )

        print(lagrange_0)
        print(lagrange_1)

        # compute their shares
        share_0 = compute_decryption_share_for_selection(
            self.guardians[0], first_selection, self.context)

        share_1 = compute_decryption_share_for_selection(
            self.guardians[1], first_selection, self.context)

        self.assertIsNotNone(share_0)
        self.assertIsNotNone(share_1)

        # compute compensations shares for the missing guardian
        compensation_0 = compute_compensated_decryption_share_for_selection(
            self.guardians[0],
            self.guardians[2].object_id,
            first_selection,
            self.context,
            identity_auxiliary_decrypt,
        )

        compensation_1 = compute_compensated_decryption_share_for_selection(
            self.guardians[1],
            self.guardians[2].object_id,
            first_selection,
            self.context,
            identity_auxiliary_decrypt,
        )

        self.assertIsNotNone(compensation_0)
        self.assertIsNotNone(compensation_1)

        print("\nSHARES:")
        print(compensation_0)
        print(compensation_1)

        # Check the share proofs
        self.assertTrue(
            compensation_0.proof.is_valid(
                first_selection.message,
                get_optional(self.guardians[0].recovery_public_key_for(
                    self.guardians[2].object_id)),
                compensation_0.share,
                self.context.crypto_extended_base_hash,
            ))

        self.assertTrue(
            compensation_1.proof.is_valid(
                first_selection.message,
                get_optional(self.guardians[1].recovery_public_key_for(
                    self.guardians[2].object_id)),
                compensation_1.share,
                self.context.crypto_extended_base_hash,
            ))

        share_pow_p = [
            pow_p(compensation_0.share, lagrange_0),
            pow_p(compensation_1.share, lagrange_1),
        ]

        print("\nSHARE_POW_P")
        print(share_pow_p)

        # reconstruct the missing share from the compensation shares
        reconstructed_share = mult_p(*[
            pow_p(compensation_0.share, lagrange_0),
            pow_p(compensation_1.share, lagrange_1),
        ])

        print("\nRECONSTRUCTED SHARE\n")
        print(reconstructed_share)

        share_2 = CiphertextDecryptionSelection(
            first_selection.object_id,
            self.guardians[2].object_id,
            first_selection.description_hash,
            reconstructed_share,
            {
                self.guardians[0].object_id: compensation_0,
                self.guardians[1].object_id: compensation_1,
            },
        )

        # Decrypt the result
        result = decrypt_selection_with_decryption_shares(
            first_selection,
            {
                self.guardians[0].object_id: (
                    self.guardians[0].share_election_public_key().key,
                    share_0,
                ),
                self.guardians[1].object_id: (
                    self.guardians[1].share_election_public_key().key,
                    share_1,
                ),
                self.guardians[2].object_id: (
                    self.guardians[2].share_election_public_key().key,
                    share_2,
                ),
            },
            self.context.crypto_extended_base_hash,
        )

        print(result)

        self.assertIsNotNone(result)
        self.assertEqual(
            result.plaintext,
            self.expected_plaintext_tally[first_selection.object_id])
示例#4
0
    def test_compute_compensated_selection(self):
        """
        demonstrates the complete workflow for computing a comepnsated decryption share
        For one selection. It is useful for verifying that the workflow is correct
        """
        # Arrange
        available_guardian_1 = self.guardians[0]
        available_guardian_2 = self.guardians[1]
        missing_guardian = self.guardians[2]
        available_guardian_1_key = available_guardian_1.share_election_public_key(
        )
        available_guardian_2_key = available_guardian_2.share_election_public_key(
        )
        missing_guardian_key = missing_guardian.share_election_public_key()

        first_selection = [
            selection for contest in self.ciphertext_tally.contests.values()
            for selection in contest.selections.values()
        ][0]

        # Compute lagrange coefficients for the guardians that are present
        lagrange_0 = compute_lagrange_coefficient(
            available_guardian_1.sequence_order,
            *[available_guardian_2.sequence_order],
        )
        lagrange_1 = compute_lagrange_coefficient(
            available_guardian_2.sequence_order,
            *[available_guardian_1.sequence_order],
        )

        print((
            f"lagrange: sequence_orders: ({available_guardian_1.sequence_order}, "
            f"{available_guardian_2.sequence_order}, {missing_guardian.sequence_order})\n"
        ))

        print(lagrange_0)
        print(lagrange_1)

        # compute their shares
        share_0 = compute_decryption_share_for_selection(
            available_guardian_1._election_keys, first_selection, self.context)

        share_1 = compute_decryption_share_for_selection(
            available_guardian_2._election_keys, first_selection, self.context)

        self.assertIsNotNone(share_0)
        self.assertIsNotNone(share_1)

        # compute compensations shares for the missing guardian
        compensation_0 = compute_compensated_decryption_share_for_selection(
            available_guardian_1.share_election_public_key(),
            available_guardian_1._auxiliary_keys,
            missing_guardian.share_election_public_key(),
            missing_guardian.share_election_partial_key_backup(
                available_guardian_1.id),
            first_selection,
            self.context,
            identity_auxiliary_decrypt,
        )

        compensation_1 = compute_compensated_decryption_share_for_selection(
            available_guardian_2.share_election_public_key(),
            available_guardian_2._auxiliary_keys,
            missing_guardian.share_election_public_key(),
            missing_guardian.share_election_partial_key_backup(
                available_guardian_2.id),
            first_selection,
            self.context,
            identity_auxiliary_decrypt,
        )

        self.assertIsNotNone(compensation_0)
        self.assertIsNotNone(compensation_1)

        print("\nSHARES:")
        print(compensation_0)
        print(compensation_1)

        # Check the share proofs
        self.assertTrue(
            compensation_0.proof.is_valid(
                first_selection.ciphertext,
                compute_recovery_public_key(available_guardian_1_key,
                                            missing_guardian_key),
                compensation_0.share,
                self.context.crypto_extended_base_hash,
            ))

        self.assertTrue(
            compensation_1.proof.is_valid(
                first_selection.ciphertext,
                compute_recovery_public_key(available_guardian_2_key,
                                            missing_guardian_key),
                compensation_1.share,
                self.context.crypto_extended_base_hash,
            ))

        share_pow_p = [
            pow_p(compensation_0.share, lagrange_0),
            pow_p(compensation_1.share, lagrange_1),
        ]

        print("\nSHARE_POW_P")
        print(share_pow_p)

        # reconstruct the missing share from the compensation shares
        reconstructed_share = mult_p(*[
            pow_p(compensation_0.share, lagrange_0),
            pow_p(compensation_1.share, lagrange_1),
        ])

        print("\nRECONSTRUCTED SHARE\n")
        print(reconstructed_share)

        share_2 = create_ciphertext_decryption_selection(
            first_selection.object_id,
            missing_guardian.id,
            reconstructed_share,
            {
                available_guardian_1.id: compensation_0,
                available_guardian_2.id: compensation_1,
            },
        )

        # Decrypt the result
        result = decrypt_selection_with_decryption_shares(
            first_selection,
            {
                available_guardian_1.id: (
                    available_guardian_1.share_election_public_key().key,
                    share_0,
                ),
                available_guardian_2.id: (
                    available_guardian_2.share_election_public_key().key,
                    share_1,
                ),
                missing_guardian.id: (
                    missing_guardian.share_election_public_key().key,
                    share_2,
                ),
            },
            self.context.crypto_extended_base_hash,
        )

        print(result)

        self.assertIsNotNone(result)
        self.assertEqual(
            result.tally,
            self.expected_plaintext_tally[first_selection.object_id])