def test_nonces_with_slices(self, seed: ElementModQ):
        n = Nonces(seed)
        count: int = 0
        l: List[ElementModQ] = []

        for i in iter(n):
            count += 1
            l.append(i)
            if count == 10:
                break
        self.assertEqual(len(l), 10)

        l2 = Nonces(seed)[0:10]
        self.assertEqual(len(l2), 10)
        self.assertEqual(l, l2)
示例#2
0
文件: tally.py 项目: nealmcb/arlo-e2e
def fast_decrypt_tally(
    tally: TALLY_TYPE,
    cec: CiphertextElectionContext,
    keypair: ElGamalKeyPair,
    proof_seed: ElementModQ,
    pool: Optional[Pool] = None,
    show_progress: bool = True,
) -> DECRYPT_TALLY_OUTPUT_TYPE:
    """
    Given a tally, as we might get from `fast_tally_ballots`, this decrypts the tally
    and returns a dict from selection object_ids to tuples containing the decrypted
    total as well as a Chaum-Pedersen proof that the total corresponds to the ciphertext.
    """
    tkeys = tally.keys()
    proof_seeds: List[ElementModQ] = Nonces(proof_seed)[0:len(tkeys)]
    inputs = [
        DecryptInput(object_id, seed, tally[object_id])
        for seed, object_id in zip(proof_seeds, tkeys)
    ]

    # Performance note: at this point, the tallies have been computed, so we
    # don't actually have all that much data left to process. There's almost
    # certainly no benefit to distributing this on a cluster.

    if show_progress:  # pragma: no cover
        inputs = tqdm(list(inputs), "Decrypting")

    wrapped_func = functools.partial(_decrypt, cec, keypair)
    result: List[DecryptOutput] = ([
        wrapped_func(x) for x in inputs
    ] if pool is None else pool.map(func=wrapped_func, iterable=inputs))

    return {r.object_id: (r.plaintext, r.decryption_proof) for r in result}
示例#3
0
    def test_reduce_with_ray_wait_with_progress(
            self, counters: List[int], keypair: ElGamalKeyPair) -> None:
        nonces = Nonces(int_to_q(3))[0:len(counters)]
        pbar = ProgressBar({
            "Ballots": len(counters),
            "Tallies": len(counters),
            "Iterations": 0
        })

        ciphertexts: List[ObjectRef] = [
            r_encrypt.remote(pbar.actor, p, n, keypair.public_key)
            for p, n in zip(counters, nonces)
        ]

        # compute in parallel
        ptotal = ray.get(
            ray_reduce_with_ray_wait(
                inputs=ciphertexts,
                shard_size=3,
                reducer_first_arg=pbar.actor,
                reducer=r_elgamal_add.remote,
                progressbar=pbar,
                progressbar_key="Tallies",
                timeout=None,
                verbose=False,
            ))

        # recompute serially
        stotal = elgamal_add(*ray.get(ciphertexts))

        self.assertEqual(stotal, ptotal)
示例#4
0
    def test_electionguard_basics(self) -> None:
        plaintexts = range(0, 1000)
        nonces = Nonces(int_to_q(3))
        keypair = elgamal_keypair_random()
        r_public_key = ray.put(keypair.public_key)

        start = timer()
        serial_ciphertexts: List[ElGamalCiphertext] = [
            elgamal_encrypt(p, n, keypair.public_key)
            for p, n in zip(plaintexts, nonces)
        ]
        serial_time = timer()

        # List[ObjectRef[ElGamalCiphertext]
        parallel_ciphertext_objects: List[ObjectRef] = [
            r_encrypt.remote(p, n, r_public_key) for p, n in zip(plaintexts, nonces)
        ]
        parallel_ciphertexts: List[ElGamalCiphertext] = ray.get(
            parallel_ciphertext_objects
        )

        parallel_time = timer()

        self.assertEqual(serial_ciphertexts, parallel_ciphertexts)
        print(
            f"Parallel speedup: {(serial_time - start) / (parallel_time - serial_time):.3f}x"
        )
示例#5
0
    def test_gmpy2_parallelism_is_safe(self):
        cpus = cpu_count()
        problem_size = 1000
        secret_keys = Nonces(int_to_q_unchecked(3))[
            0:problem_size]  # list of 1000 might-as-well-be-random Q's
        log_info(
            f"testing GMPY2 powmod parallelism safety (cpus = {cpus}, problem_size = {problem_size})"
        )

        # compute in parallel
        start = timer()
        p = Pool(cpus)
        keypairs = p.map(elgamal_keypair_from_secret, secret_keys)
        end1 = timer()

        # verify scalar
        for keypair in keypairs:
            self.assertEqual(
                keypair.public_key,
                elgamal_keypair_from_secret(keypair.secret_key).public_key,
            )
        end2 = timer()
        p.close(
        )  # apparently necessary to avoid warnings from the Pool system
        log_info(f"Parallelism speedup: {(end2 - end1) / (end1 - start):.3f}")
示例#6
0
    def test_gmpy2_parallelism_is_safe(self):
        """
        Ensures running lots of parallel exponentiations still yields the correct answer.
        This verifies that nothing incorrect is happening in the GMPY2 library
        """

        # Arrange
        scheduler = Scheduler()
        problem_size = 1000
        random_secret_keys = Nonces(int_to_q_unchecked(3))[0:problem_size]
        log_info(
            f"testing GMPY2 powmod parallelism safety (cpus = {scheduler.cpu_count}, problem_size = {problem_size})"
        )

        # Act
        start = timer()
        keypairs = scheduler.schedule(
            elgamal_keypair_from_secret,
            [list([secret_key]) for secret_key in random_secret_keys],
        )
        end1 = timer()

        # Assert
        for keypair in keypairs:
            self.assertEqual(
                keypair.public_key,
                elgamal_keypair_from_secret(keypair.secret_key).public_key,
            )
        end2 = timer()
        scheduler.close()
        log_info(f"Parallelism speedup: {(end2 - end1) / (end1 - start):.3f}")
示例#7
0
    def test_eg_conversion(self, state: DominionBallotsAndContext,
                           seed: ElementModQ) -> None:
        ied = InternalElectionDescription(state.ed)
        ballot_box = BallotBox(ied, state.cec)

        seed_hash = EncryptionDevice("Location").get_hash()
        nonces = Nonces(seed)[0:len(state.ballots)]

        for b, n in zip(state.ballots, nonces):
            eb = encrypt_ballot(b, ied, state.cec, seed_hash, n)
            self.assertIsNotNone(eb)

            pb = decrypt_ballot_with_secret(
                eb,
                ied,
                state.cec.crypto_extended_base_hash,
                state.cec.elgamal_public_key,
                state.secret_key,
            )
            self.assertEqual(b, pb)

            self.assertGreater(len(eb.contests), 0)
            cast_result = ballot_box.cast(eb)
            self.assertIsNotNone(cast_result)

        tally = tally_ballots(ballot_box._store, ied, state.cec)
        self.assertIsNotNone(tally)
        results = decrypt_tally_with_secret(tally, state.secret_key)

        self.assertEqual(len(results.keys()), len(state.id_map.keys()))
        for obj_id in results.keys():
            self.assertIn(obj_id, state.id_map)
            cvr_sum = int(state.dominion_cvrs.data[state.id_map[obj_id]].sum())
            decryption = results[obj_id]
            self.assertEqual(cvr_sum, decryption)
示例#8
0
def ray_decrypt_tally(
    tally: TALLY_TYPE,
    cec: ObjectRef,  # ObjectRef[CiphertextElectionContext]
    keypair: ObjectRef,  # ObjectRef[ElGamalKeyPair]
    proof_seed: ElementModQ,
) -> DECRYPT_TALLY_OUTPUT_TYPE:
    """
    Given a tally, this decrypts the tally
    and returns a dict from selection object_ids to tuples containing the decrypted
    total as well as a Chaum-Pedersen proof that the total corresponds to the ciphertext.

    :param tally: an election tally
    :param cec: a Ray ObjectRef containing a `CiphertextElectionContext`
    :param keypair: a Ray ObjectRef containing an `ElGamalKeyPair`
    :param proof_seed: an ElementModQ
    """
    tkeys = tally.keys()
    proof_seeds: List[ElementModQ] = Nonces(proof_seed)[0:len(tkeys)]
    inputs: List[DecryptInput] = [
        DecryptInput(object_id, seed, tally[object_id])
        for seed, object_id in zip(proof_seeds, tkeys)
    ]

    # We can't be lazy here: we need to have all this data in hand so we can
    # rearrange it into a dictionary and return it.
    result: List[Optional[DecryptOutput]] = ray.get(
        [r_decrypt.remote(cec, keypair, x) for x in inputs])

    if None in result:
        log_and_print(
            f"Unexpected failure from in ray_decrypt_tally, returning an empty dict",
            True,
        )
        return {}

    # mypy can't figure this that None isn't here any more, so we need to check for None again
    return {
        r.object_id: (r.plaintext, r.decryption_proof)
        for r in result if r is not None
    }
示例#9
0
    def test_reduce_with_rounds_without_progress(
            self, counters: List[int], keypair: ElGamalKeyPair) -> None:
        nonces = Nonces(int_to_q(3))[0:len(counters)]

        ciphertexts: List[ObjectRef] = [
            r_encrypt.remote(None, p, n, keypair.public_key)
            for p, n in zip(counters, nonces)
        ]

        # compute in parallel
        ptotal = ray.get(
            ray_reduce_with_rounds(
                inputs=ciphertexts,
                shard_size=3,
                reducer_first_arg=None,
                reducer=r_elgamal_add.remote,
                progressbar=None,
                verbose=True,
            ))

        # recompute serially
        stotal = elgamal_add(*ray.get(ciphertexts))

        self.assertEqual(stotal, ptotal)
示例#10
0
 def test_nonces_type_errors(self):
     n = Nonces(int_to_q_unchecked(3))
     self.assertRaises(TypeError, len, n)
     self.assertRaises(TypeError, lambda: n[1:])
     self.assertRaises(TypeError, lambda: n.get_with_headers(-1))
示例#11
0
def ray_tally_everything(
    cvrs: DominionCSV,
    verbose: bool = True,
    use_progressbar: bool = True,
    date: Optional[datetime] = None,
    seed_hash: Optional[ElementModQ] = None,
    master_nonce: Optional[ElementModQ] = None,
    secret_key: Optional[ElementModQ] = None,
    root_dir: Optional[str] = None,
) -> "RayTallyEverythingResults":
    """
    This top-level function takes a collection of Dominion CVRs and produces everything that
    we might want for arlo-e2e: a list of encrypted ballots, their encrypted and decrypted tally,
    and proofs of the correctness of the whole thing. The election `secret_key` is an optional
    parameter. If absent, a random keypair is generated and used. Similarly, if a `seed_hash` or
    `master_nonce` is not provided, random ones are generated and used.

    For parallelism, Ray is used. Make sure you've called `ray.init()` or `ray_localhost_init()`
    before calling this.

    If `root_dir` is specified, then the tally is written out to the specified directory, and
    the resulting `RayTallyEverythingResults` object will support the methods that allow those
    ballots to be read back in again. Conversely, if `root_dir` is `None`, then nothing is
    written to disk, and the result will not have access to individual ballots.
    """

    rows, cols = cvrs.data.shape

    ray_wait_for_workers(min_workers=2)

    if date is None:
        date = datetime.now()

    if root_dir is not None:
        mkdir_helper(root_dir, num_retries=NUM_WRITE_RETRIES)
        r_manifest_aggregator = ManifestAggregatorActor.remote(
            root_dir)  # type: ignore
    else:
        r_manifest_aggregator = None

    r_root_dir = ray.put(root_dir)

    start_time = timer()

    # Performance note: by using to_election_description_ray rather than to_election_description, we're
    # only getting back a list of dictionaries rather than a list of PlaintextBallots. We're pushing that
    # work out into the nodes, where it will run in parallel. The BallotPlaintextFactory wraps up all
    # the (immutable) state necessary to convert from these dicts to PlaintextBallots and is meant to
    # be sent to every node in the cluster.

    ed, bpf, ballot_dicts, id_map = cvrs.to_election_description_ray(date=date)
    setup_time = timer()
    num_ballots = len(ballot_dicts)
    assert num_ballots > 0, "can't have zero ballots!"
    log_and_print(
        f"ElectionGuard setup time: {setup_time - start_time: .3f} sec, {num_ballots / (setup_time - start_time):.3f} ballots/sec"
    )

    keypair = (elgamal_keypair_random() if secret_key is None else
               elgamal_keypair_from_secret(secret_key))
    assert keypair is not None, "unexpected failure with keypair computation"
    secret_key, public_key = keypair

    cec = make_ciphertext_election_context(
        number_of_guardians=1,
        quorum=1,
        elgamal_public_key=public_key,
        description_hash=ed.crypto_hash(),
    )
    r_cec = ray.put(cec)

    ied = InternalElectionDescription(ed)
    r_ied = ray.put(ied)

    if seed_hash is None:
        seed_hash = rand_q()
    r_seed_hash = ray.put(seed_hash)
    r_keypair = ray.put(keypair)

    r_ballot_plaintext_factory = ray.put(bpf)

    if master_nonce is None:
        master_nonce = rand_q()

    nonces = Nonces(master_nonce)
    r_nonces = ray.put(nonces)
    nonce_indices = range(num_ballots)

    inputs = list(zip(ballot_dicts, nonce_indices))

    batches = shard_list_uniform(inputs, BATCH_SIZE)
    num_batches = len(batches)
    log_and_print(
        f"Launching Ray.io remote encryption! (number of batches: {num_batches})"
    )

    start_time = timer()

    progressbar = (ProgressBar({
        "Ballots": num_ballots,
        "Tallies": num_ballots,
        "Iterations": 0,
        "Batch": 0,
    }) if use_progressbar else None)
    progressbar_actor = progressbar.actor if progressbar is not None else None

    batch_tallies: List[ObjectRef] = []
    for batch in batches:
        if progressbar_actor:
            progressbar_actor.update_completed.remote("Batch", 1)

        num_ballots_in_batch = len(batch)
        sharded_inputs = shard_list_uniform(batch, BALLOTS_PER_SHARD)
        num_shards = len(sharded_inputs)

        partial_tally_refs = [
            r_encrypt_and_write.remote(
                r_ied,
                r_cec,
                r_seed_hash,
                r_root_dir,
                r_manifest_aggregator,
                progressbar_actor,
                r_ballot_plaintext_factory,
                r_nonces,
                right_tuple_list(shard),
                *(left_tuple_list(shard)),
            ) for shard in sharded_inputs
        ]

        # log_and_print("Remote tallying.")
        btally = ray_tally_ballots(partial_tally_refs, BALLOTS_PER_SHARD,
                                   progressbar)
        batch_tallies.append(btally)

    # Each batch ultimately yields one partial tally; we add these up here at the
    # very end. If we have a million ballots and have batches of 10k ballots, this
    # would mean we'd have only 100 partial tallies. So, what's here works just fine.
    # If we wanted, we could certainly burn some scalar time and keep a running,
    # singular, partial tally. It's probably more important to push onward to the
    # next batch, so we can do as much work in parallel as possible.

    if len(batch_tallies) > 1:
        tally = ray.get(ray_tally_ballots(batch_tallies, 10, progressbar))
    else:
        tally = ray.get(batch_tallies[0])

    if progressbar:
        progressbar.close()

    assert tally is not None, "tally failed!"

    log_and_print("Tally decryption.")
    decrypted_tally: DECRYPT_TALLY_OUTPUT_TYPE = ray_decrypt_tally(
        tally, r_cec, r_keypair, seed_hash)

    log_and_print("Validating tally.")

    # Sanity-checking logic: make sure we don't have any unexpected keys, and that the decrypted totals
    # match up with the columns in the original plaintext data.
    tally_keys = set(decrypted_tally.keys())
    expected_keys = set(id_map.keys())

    assert tally_keys.issubset(
        expected_keys
    ), f"bad tally keys (actual keys: {sorted(tally_keys)}, expected keys: {sorted(expected_keys)})"

    for obj_id in decrypted_tally.keys():
        cvr_sum = int(cvrs.data[id_map[obj_id]].sum())
        decryption, proof = decrypted_tally[obj_id]
        assert cvr_sum == decryption, f"decryption failed for {obj_id}"

    final_manifest: Optional[Manifest] = None

    if root_dir is not None:
        final_manifest = ray.get(r_manifest_aggregator.result.remote())
        assert isinstance(
            final_manifest,
            Manifest), "type error: bad result from manifest aggregation"

    # Assemble the data structure that we're returning. Having nonces in the ciphertext makes these
    # structures sensitive for writing out to disk, but otherwise they're ready to go.
    log_and_print("Constructing results.")
    reported_tally: Dict[str, SelectionInfo] = {
        k: SelectionInfo(
            object_id=k,
            encrypted_tally=tally[k],
            # we need to forcibly convert mpz to int here to make serialization work properly
            decrypted_tally=int(decrypted_tally[k][0]),
            proof=decrypted_tally[k][1],
        )
        for k in tally.keys()
    }

    tabulate_time = timer()

    log_and_print(
        f"Encryption and tabulation: {rows} ballots, {rows / (tabulate_time - start_time): .3f} ballot/sec",
        verbose,
    )

    return RayTallyEverythingResults(
        metadata=cvrs.metadata,
        cvr_metadata=cvrs.dataframe_without_selections(),
        election_description=ed,
        num_ballots=rows,
        manifest=final_manifest,
        tally=SelectionTally(reported_tally),
        context=cec,
    )
    def test_accumulation_encryption_decryption(
        self,
        everything: ELECTIONS_AND_BALLOTS_TUPLE_TYPE,
        nonce: ElementModQ,
    ):
        """
        Tests that decryption is the inverse of encryption over arbitrarily generated elections and ballots.

        This test uses an abitrarily generated dataset with a single public-private keypair for the election
        encryption context.  It also manually verifies that homomorphic accumulation works as expected.
        """
        # Arrange
        election_description, metadata, ballots, secret_key, context = everything

        # Tally the plaintext ballots for comparison later
        plaintext_tallies = accumulate_plaintext_ballots(ballots)
        num_ballots = len(ballots)
        num_contests = len(metadata.contests)
        zero_nonce, *nonces = Nonces(nonce)[:num_ballots + 1]
        self.assertEqual(len(nonces), num_ballots)
        self.assertTrue(len(metadata.contests) > 0)

        # Generatea valid encryption of zero
        encrypted_zero = elgamal_encrypt(0, zero_nonce,
                                         context.elgamal_public_key)

        # Act
        encrypted_ballots = []

        # encrypt each ballot
        for i in range(num_ballots):
            encrypted_ballot = encrypt_ballot(ballots[i], metadata, context,
                                              SEED_HASH, nonces[i])
            encrypted_ballots.append(encrypted_ballot)

            # sanity check the encryption
            self.assertIsNotNone(encrypted_ballot)
            self.assertEqual(num_contests, len(encrypted_ballot.contests))

            # decrypt the ballot with secret and verify it matches the plaintext
            decrypted_ballot = decrypt_ballot_with_secret(
                ballot=encrypted_ballot,
                election_metadata=metadata,
                crypto_extended_base_hash=context.crypto_extended_base_hash,
                public_key=context.elgamal_public_key,
                secret_key=secret_key,
                remove_placeholders=True,
            )
            self.assertEqual(ballots[i], decrypted_ballot)

        # homomorphically accumualte the encrypted ballot representations
        encrypted_tallies = _accumulate_encrypted_ballots(
            encrypted_zero, encrypted_ballots)

        decrypted_tallies = {}
        for object_id in encrypted_tallies.keys():
            decrypted_tallies[object_id] = encrypted_tallies[
                object_id].decrypt(secret_key)

        # loop through the contest descriptions and verify
        # the decrypted tallies match the plaintext tallies
        for contest in metadata.contests:
            # Sanity check the generated data
            self.assertTrue(len(contest.ballot_selections) > 0)
            self.assertTrue(len(contest.placeholder_selections) > 0)

            decrypted_selection_tallies = [
                decrypted_tallies[selection.object_id]
                for selection in contest.ballot_selections
            ]
            decrypted_placeholder_tallies = [
                decrypted_tallies[placeholder.object_id]
                for placeholder in contest.placeholder_selections
            ]
            plaintext_tally_values = [
                plaintext_tallies[selection.object_id]
                for selection in contest.ballot_selections
            ]

            # verify the plaintext tallies match the decrypted tallies
            self.assertEqual(decrypted_selection_tallies,
                             plaintext_tally_values)

            # validate the right number of selections including placeholders across all ballots
            self.assertEqual(
                contest.number_elected * num_ballots,
                sum(decrypted_selection_tallies) +
                sum(decrypted_placeholder_tallies),
            )
    valid = proof.is_valid(ciphertext, keypair.public_key)
    end2 = timer()
    if not valid:
        raise Exception(
            "Wasn't expecting an invalid proof during a benchmark!")
    return end1 - start1, end2 - end1


def identity(x: int) -> int:
    """Placeholder function used just to warm up the parallel mapper prior to benchmarking."""
    return x


if __name__ == "__main__":
    problem_sizes = (100, 500, 1000, 5000)
    rands = Nonces(int_to_q_unchecked(31337))
    speedup: Dict[int, float] = {}
    print(f"CPUs detected: {cpu_count()}, launching thread pool")
    pool = Pool(cpu_count())

    # warm up the pool to help get consistent measurements
    results = pool.map(identity, range(1, 30000))
    assert results == list(range(1, 30000))

    bench_start = timer()

    for size in problem_sizes:
        print("Benchmarking on problem size: ", size)
        seeds = rands[0:size]
        inputs = [
            BenchInput(
示例#14
0
文件: tally.py 项目: nealmcb/arlo-e2e
def fast_tally_everything(
    cvrs: DominionCSV,
    pool: Optional[Pool] = None,
    verbose: bool = True,
    date: Optional[datetime] = None,
    seed_hash: Optional[ElementModQ] = None,
    master_nonce: Optional[ElementModQ] = None,
    secret_key: Optional[ElementModQ] = None,
    use_progressbar: bool = True,
) -> FastTallyEverythingResults:
    """
    This top-level function takes a collection of Dominion CVRs and produces everything that
    we might want for arlo-e2e: a list of encrypted ballots, their encrypted and decrypted tally,
    and proofs of the correctness of the whole thing. The election `secret_key` is an optional
    parameter. If absent, a random keypair is generated and used. Similarly, if a `seed_hash` or
    `master_nonce` is not provided, random ones are generated and used.

    For parallelism, a `multiprocessing.pool.Pool` may be provided, and should result in significant
    speedups on multicore computers. If absent, the computation will proceed sequentially.
    """
    rows, cols = cvrs.data.shape

    if date is None:
        date = datetime.now()

    parse_time = timer()
    log_and_print(f"Rows: {rows}, cols: {cols}", verbose)

    ed, ballots, id_map = cvrs.to_election_description(date=date)
    assert len(ballots) > 0, "can't have zero ballots!"

    keypair = (elgamal_keypair_random() if secret_key is None else
               elgamal_keypair_from_secret(secret_key))
    assert keypair is not None, "unexpected failure with keypair computation"
    secret_key, public_key = keypair

    # This computation exists only to cause side-effects in the DLog engine, so the lame nonce is not an issue.
    assert len(ballots) == get_optional(
        elgamal_encrypt(m=len(ballots),
                        nonce=int_to_q_unchecked(3),
                        public_key=public_key)).decrypt(
                            secret_key), "got wrong ElGamal decryption!"

    dlog_prime_time = timer()
    log_and_print(
        f"DLog prime time (n={len(ballots)}): {dlog_prime_time - parse_time: .3f} sec",
        verbose,
    )

    cec = make_ciphertext_election_context(
        number_of_guardians=1,
        quorum=1,
        elgamal_public_key=public_key,
        description_hash=ed.crypto_hash(),
    )

    ied = InternalElectionDescription(ed)

    # REVIEW THIS: is this cryptographically sound? Is the seed_hash properly a secret? Should
    # it go in the output? The nonces are clearly secret. If you know them, you can decrypt.
    if seed_hash is None:
        seed_hash = rand_q()
    if master_nonce is None:
        master_nonce = rand_q()
    nonces: List[ElementModQ] = Nonces(master_nonce)[0:len(ballots)]

    # even if verbose is false, we still want to see the progress bar for the encryption
    cballots = fast_encrypt_ballots(ballots,
                                    ied,
                                    cec,
                                    seed_hash,
                                    nonces,
                                    pool,
                                    use_progressbar=use_progressbar)
    eg_encrypt_time = timer()

    log_and_print(
        f"Encryption time: {eg_encrypt_time - dlog_prime_time: .3f} sec",
        verbose)
    log_and_print(
        f"Encryption rate: {rows / (eg_encrypt_time - dlog_prime_time): .3f} ballot/sec",
        verbose,
    )

    tally: TALLY_TYPE = fast_tally_ballots(cballots, pool)
    eg_tabulate_time = timer()

    log_and_print(
        f"Tabulation time: {eg_tabulate_time - eg_encrypt_time: .3f} sec",
        verbose)
    log_and_print(
        f"Tabulation rate: {rows / (eg_tabulate_time - eg_encrypt_time): .3f} ballot/sec",
        verbose,
    )
    log_and_print(
        f"Encryption and tabulation: {rows} ballots / {eg_tabulate_time - dlog_prime_time: .3f} sec = {rows / (eg_tabulate_time - dlog_prime_time): .3f} ballot/sec",
        verbose,
    )

    assert tally is not None, "tally failed!"

    if verbose:  # pragma: no cover
        print("Decryption & Proofs: ")
    decrypted_tally: DECRYPT_TALLY_OUTPUT_TYPE = fast_decrypt_tally(
        tally, cec, keypair, seed_hash, pool, verbose)
    eg_decryption_time = timer()
    log_and_print(
        f"Decryption time: {eg_decryption_time - eg_tabulate_time: .3f} sec",
        verbose)
    log_and_print(
        f"Decryption rate: {len(decrypted_tally.keys()) / (eg_decryption_time - eg_tabulate_time): .3f} selection/sec",
        verbose,
    )

    # Sanity-checking logic: make sure we don't have any unexpected keys, and that the decrypted totals
    # match up with the columns in the original plaintext data.
    for obj_id in decrypted_tally.keys():
        assert obj_id in id_map, "object_id in results that we don't know about!"
        cvr_sum = int(cvrs.data[id_map[obj_id]].sum())
        decryption, proof = decrypted_tally[obj_id]
        assert cvr_sum == decryption, f"decryption failed for {obj_id}"

    # Assemble the data structure that we're returning. Having nonces in the ciphertext makes these
    # structures sensitive for writing out to disk, but otherwise they're ready to go.
    reported_tally: Dict[str, SelectionInfo] = {
        k: SelectionInfo(
            object_id=k,
            encrypted_tally=tally[k],
            # we need to forcibly convert mpz to int here to make serialization work properly
            decrypted_tally=int(decrypted_tally[k][0]),
            proof=decrypted_tally[k][1],
        )
        for k in tally.keys()
    }

    # strips the ballots of their nonces, which is important because those could allow for decryption
    accepted_ballots = [ciphertext_ballot_to_accepted(x) for x in cballots]

    return FastTallyEverythingResults(
        metadata=cvrs.metadata,
        cvr_metadata=cvrs.dataframe_without_selections(),
        election_description=ed,
        encrypted_ballot_memos={
            ballot.object_id: make_memo_value(ballot)
            for ballot in accepted_ballots
        },
        tally=SelectionTally(reported_tally),
        context=cec,
    )
示例#15
0
 def test_nonces_seed_matters(self, seed1: ElementModQ, seed2: ElementModQ,
                              i: int):
     assume(seed1 != seed2)
     n1 = Nonces(seed1)
     n2 = Nonces(seed2)
     self.assertNotEqual(n1[i], n2[i])
示例#16
0
 def test_nonces_deterministic(self, seed: ElementModQ, i: int):
     n1 = Nonces(seed)
     n2 = Nonces(seed)
     self.assertEqual(n1[i], n2[i])
示例#17
0
 def test_nonces_iterable(self, seed: ElementModQ):
     n = Nonces(seed)
     i = iter(n)
     q0 = next(i)
     q1 = next(i)
     self.assertTrue(q0 != q1)