示例#1
0
class AgentSAC(AgentBase):
    def __init__(self):
        super().__init__()
        self.target_entropy = None
        self.alpha_log = None
        self.alpha_optimizer = None
        self.target_entropy = 1.0  # * np.log(action_dim)

    def init(self, net_dim, state_dim, action_dim, if_per=False):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.target_entropy *= np.log(action_dim)
        self.alpha_log = torch.tensor((-np.log(action_dim) * np.e,), dtype=torch.float32,
                                      requires_grad=True, device=self.device)  # trainable parameter
        self.alpha_optimizer = torch.optim.Adam((self.alpha_log,), self.learning_rate)

        self.cri = CriticTwin(net_dim, state_dim, action_dim).to(self.device)
        self.cri_target = deepcopy(self.cri)
        self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), lr=self.learning_rate)

        self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device)
        self.act_optimizer = torch.optim.Adam(self.act.parameters(), lr=self.learning_rate)

        self.criterion = torch.nn.SmoothL1Loss(reduction='none' if if_per else 'mean')
        if if_per:
            self.get_obj_critic = self.get_obj_critic_per
        else:
            self.get_obj_critic = self.get_obj_critic_raw

    def select_action(self, state) -> np.ndarray:
        states = torch.as_tensor((state,), dtype=torch.float32, device=self.device).detach_()
        action = self.act.get_action(states)[0]
        return action.cpu().numpy()

    def update_net(self, buffer, target_step, batch_size, repeat_times) -> (float, float):
        buffer.update_now_len_before_sample()

        alpha = self.alpha_log.exp().detach()
        obj_critic = None
        for _ in range(int(target_step * repeat_times)):
            '''objective of critic'''
            obj_critic, state = self.get_obj_critic(buffer, batch_size, alpha)
            self.cri_optimizer.zero_grad()
            obj_critic.backward()
            self.cri_optimizer.step()
            self.soft_update(self.cri_target, self.cri, self.soft_update_tau)

            '''objective of alpha (temperature parameter automatic adjustment)'''
            action_pg, logprob = self.act.get_action_logprob(state)  # policy gradient

            obj_alpha = (self.alpha_log * (logprob - self.target_entropy).detach()).mean()
            self.alpha_optimizer.zero_grad()
            obj_alpha.backward()
            self.alpha_optimizer.step()

            '''objective of actor'''
            alpha = self.alpha_log.exp().detach()
            obj_actor = -(torch.min(*self.cri_target.get_q1_q2(state, action_pg)) + logprob * alpha).mean()

            self.act_optimizer.zero_grad()
            obj_actor.backward()
            self.act_optimizer.step()

        return alpha.item(), obj_critic.item()

    def get_obj_critic_raw(self, buffer, batch_size, alpha):
        with torch.no_grad():
            reward, mask, action, state, next_s = buffer.sample_batch(batch_size)
            next_a, next_logprob = self.act.get_action_logprob(next_s)
            next_q = torch.min(*self.cri_target.get_q1_q2(next_s, next_a))
            q_label = reward + mask * (next_q + next_logprob * alpha)
        q1, q2 = self.cri.get_q1_q2(state, action)  # twin critics
        obj_critic = self.criterion(q1, q_label) + self.criterion(q2, q_label)
        return obj_critic, state

    def get_obj_critic_per(self, buffer, batch_size, alpha):
        with torch.no_grad():
            reward, mask, action, state, next_s, is_weights = buffer.sample_batch(batch_size)
            next_a, next_logprob = self.act.get_action_logprob(next_s)
            next_q = torch.min(*self.cri_target.get_q1_q2(next_s, next_a))
            q_label = reward + mask * (next_q + next_logprob * alpha)
        q1, q2 = self.cri.get_q1_q2(state, action)  # twin critics
        obj_critic = ((self.criterion(q1, q_label) + self.criterion(q2, q_label)) * is_weights).mean()

        td_error = (q_label - torch.min(q1, q1).detach()).abs()
        buffer.td_error_update(td_error)
        return obj_critic, state
示例#2
0
class AgentTD3(AgentDDPG):
    def __init__(self):
        super().__init__()
        self.explore_noise = 0.1  # standard deviation of explore noise
        self.policy_noise = 0.2  # standard deviation of policy noise
        self.update_freq = 2  # delay update frequency, for soft target update

    def init(self, net_dim, state_dim, action_dim, if_per=False):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        self.cri = CriticTwin(net_dim, state_dim, action_dim).to(self.device)
        self.cri_target = deepcopy(self.cri)
        self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), lr=self.learning_rate)

        self.act = Actor(net_dim, state_dim, action_dim).to(self.device)
        self.act_target = deepcopy(self.act)
        self.act_optimizer = torch.optim.Adam(self.act.parameters(), lr=self.learning_rate)

        self.criterion = torch.nn.SmoothL1Loss(reduction='none' if if_per else 'mean')
        if if_per:
            self.get_obj_critic = self.get_obj_critic_per
        else:
            self.get_obj_critic = self.get_obj_critic_raw

    def select_action(self, state) -> np.ndarray:
        states = torch.as_tensor((state,), dtype=torch.float32, device=self.device).detach_()
        action = self.act(states)[0]
        action = (action + torch.randn_like(action) * self.explore_noise).clamp(-1, 1)
        return action.cpu().numpy()

    def update_net(self, buffer, target_step, batch_size, repeat_times) -> (float, float):
        buffer.update_now_len_before_sample()

        obj_critic = obj_actor = None
        for i in range(int(target_step * repeat_times)):
            obj_critic, state = self.get_obj_critic(buffer, batch_size)
            self.cri_optimizer.zero_grad()
            obj_critic.backward()
            self.cri_optimizer.step()
            if i % self.update_freq == 0:  # delay update
                self.soft_update(self.cri_target, self.cri, self.soft_update_tau)

            q_value_pg = self.act(state)  # policy gradient
            obj_actor = -self.cri_target(state, q_value_pg).mean()  # obj_actor
            self.act_optimizer.zero_grad()
            obj_actor.backward()
            self.act_optimizer.step()
            if i % self.update_freq == 0:  # delay update
                self.soft_update(self.act_target, self.act, self.soft_update_tau)

        return obj_actor.item(), obj_critic.item() / 2

    def get_obj_critic_raw(self, buffer, batch_size):
        with torch.no_grad():
            reward, mask, action, state, next_s = buffer.sample_batch(batch_size)
            next_a = self.act_target.get_action(next_s, self.policy_noise)  # policy noise
            next_q = torch.min(*self.cri_target.get_q1_q2(next_s, next_a))  # twin critics
            q_label = reward + mask * next_q
        q1, q2 = self.cri.get_q1_q2(state, action)
        obj_critic = self.criterion(q1, q_label) + self.criterion(q2, q_label)  # twin critics
        return obj_critic, state

    def get_obj_critic_per(self, buffer, batch_size):
        """Prioritized Experience Replay

        Contributor: Github GyChou
        """
        with torch.no_grad():
            reward, mask, action, state, next_s, is_weights = buffer.sample_batch(batch_size)
            next_a = self.act_target.get_action(next_s, self.policy_noise)  # policy noise
            next_q = torch.min(*self.cri_target.get_q1_q2(next_s, next_a))  # twin critics
            q_label = reward + mask * next_q

        q1, q2 = self.cri.get_q1_q2(state, action)
        obj_critic = ((self.criterion(q1, q_label) + self.criterion(q2, q_label)) * is_weights).mean()

        td_error = (q_label - torch.min(q1, q1).detach()).abs()
        buffer.td_error_update(td_error)
        return obj_critic, state