示例#1
0
    def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4):
        super().__init__()
        self.target_entropy = np.log(action_dim)
        self.alpha_log = torch.tensor(
            (-np.log(action_dim) * np.e, ),
            dtype=torch.float32,
            requires_grad=True,
            device=self.device)  # trainable parameter

        self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device)
        self.act_target = deepcopy(self.act)
        self.cri = CriticTwin(
            int(net_dim * 1.25),
            state_dim,
            action_dim,
        ).to(self.device)
        self.cri_target = deepcopy(self.cri)

        self.criterion = torch.nn.SmoothL1Loss()
        self.optimizer = torch.optim.Adam([{
            'params': self.act.parameters(),
            'lr': learning_rate * 0.75
        }, {
            'params': self.cri.parameters(),
            'lr': learning_rate * 1.25
        }, {
            'params': (self.alpha_log, ),
            'lr': learning_rate
        }])
示例#2
0
class AgentSAC(AgentBase):
    def __init__(self):
        super().__init__()
        self.target_entropy = None
        self.alpha_log = None
        self.alpha_optimizer = None

    def init(self, net_dim, state_dim, action_dim):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.target_entropy = np.log(action_dim)
        self.alpha_log = torch.tensor((-np.log(action_dim) * np.e,), dtype=torch.float32,
                                      requires_grad=True, device=self.device)  # trainable parameter

        self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device)  # SAC don't use act_target
        self.cri = CriticTwin(int(net_dim * 1.25), state_dim, action_dim).to(self.device)
        self.cri_target = deepcopy(self.cri)

        self.criterion = torch.nn.SmoothL1Loss()
        self.act_optimizer = torch.optim.Adam(self.act.parameters(), lr=self.learning_rate)
        self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), lr=self.learning_rate)
        self.alpha_optimizer = torch.optim.Adam((self.alpha_log,), self.learning_rate)

    def select_action(self, state):
        states = torch.as_tensor((state,), dtype=torch.float32, device=self.device)
        action = self.act.get_action(states)[0]
        return action.detach().cpu().numpy()

    def update_net(self, buffer, target_step, batch_size, repeat_times):
        buffer.update__now_len__before_sample()

        alpha = self.alpha_log.exp().detach()
        obj_critic = None
        for _ in range(int(target_step * repeat_times)):
            with torch.no_grad():
                reward, mask, action, state, next_s = buffer.sample_batch(batch_size)
                next_a, next_logprob = self.act.get_action_logprob(next_s)
                next_q = torch.min(*self.cri_target.get_q1_q2(next_s, next_a))
                q_label = reward + mask * (next_q + next_logprob * alpha)
            q1, q2 = self.cri.get_q1_q2(state, action)
            obj_critic = self.criterion(q1, q_label) + self.criterion(q2, q_label)

            self.cri_optimizer.zero_grad()
            obj_critic.backward()
            self.cri_optimizer.step()
            self.soft_update(self.cri_target, self.cri)

            action_pg, logprob = self.act.get_action_logprob(state)  # policy gradient
            obj_alpha = (self.alpha_log * (logprob - self.target_entropy).detach()).mean()
            self.alpha_optimizer.zero_grad()
            obj_alpha.backward()
            self.alpha_optimizer.step()

            alpha = self.alpha_log.exp().detach()
            obj_actor = -(torch.min(*self.cri_target.get_q1_q2(state, action_pg)) + logprob * alpha).mean()

            self.act_optimizer.zero_grad()
            obj_actor.backward()
            self.act_optimizer.step()

        return alpha.item(), obj_critic.item()
示例#3
0
    def init(self, net_dim, state_dim, action_dim):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.target_entropy = np.log(action_dim)
        self.alpha_log = torch.tensor((-np.log(action_dim) * np.e,), dtype=torch.float32,
                                      requires_grad=True, device=self.device)  # trainable parameter

        self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device)  # SAC don't use act_target
        self.cri = CriticTwin(int(net_dim * 1.25), state_dim, action_dim).to(self.device)
        self.cri_target = CriticTwin(int(net_dim * 1.25), state_dim, action_dim).to(self.device)

        self.act_optimizer = torch.optim.Adam(self.act.parameters(), lr=self.learning_rate)
        self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), lr=self.learning_rate)
        self.alpha_optimizer = torch.optim.Adam((self.alpha_log,), self.learning_rate)
示例#4
0
class AgentSAC(AgentBase):
    def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4):
        super().__init__()
        self.target_entropy = np.log(action_dim)
        self.alpha_log = torch.tensor(
            (-np.log(action_dim) * np.e, ),
            dtype=torch.float32,
            requires_grad=True,
            device=self.device)  # trainable parameter

        self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device)
        self.act_target = deepcopy(self.act)
        self.cri = CriticTwin(
            int(net_dim * 1.25),
            state_dim,
            action_dim,
        ).to(self.device)
        self.cri_target = deepcopy(self.cri)

        self.criterion = torch.nn.SmoothL1Loss()
        self.optimizer = torch.optim.Adam([{
            'params': self.act.parameters(),
            'lr': learning_rate * 0.75
        }, {
            'params': self.cri.parameters(),
            'lr': learning_rate * 1.25
        }, {
            'params': (self.alpha_log, ),
            'lr': learning_rate
        }])

    def select_actions(self, states):  # states = (state, ...)
        states = torch.as_tensor(states,
                                 dtype=torch.float32,
                                 device=self.device)
        actions = self.act.get_action(states)
        return actions.detach().cpu().numpy()

    def update_net(self, buffer, max_step, batch_size, repeat_times):
        buffer.update__now_len__before_sample()

        alpha = self.alpha_log.exp().detach()
        obj_actor = obj_critic = None
        for _ in range(int(max_step * repeat_times)):
            with torch.no_grad():
                reward, mask, action, state, next_s = buffer.random_sample(
                    batch_size)
                next_a, next_log_prob = self.act_target.get__action__log_prob(
                    next_s)
                next_q = torch.min(*self.cri_target.get__q1_q2(next_s, next_a))
                q_label = reward + mask * (next_q + next_log_prob * alpha)
            q1, q2 = self.cri.get__q1_q2(state, action)
            obj_critic = self.criterion(q1, q_label) + self.criterion(
                q2, q_label)

            action_pg, log_prob = self.act.get__action__log_prob(
                state)  # policy gradient
            obj_alpha = (self.alpha_log *
                         (log_prob - self.target_entropy).detach()).mean()

            alpha = self.alpha_log.exp().detach()
            with torch.no_grad():
                self.alpha_log[:] = self.alpha_log.clamp(-16, 2)
            obj_actor = -(
                torch.min(*self.cri_target.get__q1_q2(state, action_pg)) +
                log_prob * alpha).mean()

            obj_united = obj_critic + obj_alpha + obj_actor
            self.optimizer.zero_grad()
            obj_united.backward()
            self.optimizer.step()

            soft_target_update(self.cri_target, self.cri)
            soft_target_update(self.act_target, self.act)
        # return obj_actor.item(), obj_critic.item()
        return alpha.item(), obj_critic.item()