示例#1
0
class AgentSAC(AgentBase):
    def __init__(self):
        super().__init__()
        self.target_entropy = None
        self.alpha_log = None
        self.alpha_optimizer = None

    def init(self, net_dim, state_dim, action_dim):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.target_entropy = np.log(action_dim)
        self.alpha_log = torch.tensor((-np.log(action_dim) * np.e,), dtype=torch.float32,
                                      requires_grad=True, device=self.device)  # trainable parameter

        self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device)  # SAC don't use act_target
        self.cri = CriticTwin(int(net_dim * 1.25), state_dim, action_dim).to(self.device)
        self.cri_target = deepcopy(self.cri)

        self.criterion = torch.nn.SmoothL1Loss()
        self.act_optimizer = torch.optim.Adam(self.act.parameters(), lr=self.learning_rate)
        self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), lr=self.learning_rate)
        self.alpha_optimizer = torch.optim.Adam((self.alpha_log,), self.learning_rate)

    def select_action(self, state):
        states = torch.as_tensor((state,), dtype=torch.float32, device=self.device)
        action = self.act.get_action(states)[0]
        return action.detach().cpu().numpy()

    def update_net(self, buffer, target_step, batch_size, repeat_times):
        buffer.update__now_len__before_sample()

        alpha = self.alpha_log.exp().detach()
        obj_critic = None
        for _ in range(int(target_step * repeat_times)):
            with torch.no_grad():
                reward, mask, action, state, next_s = buffer.sample_batch(batch_size)
                next_a, next_logprob = self.act.get_action_logprob(next_s)
                next_q = torch.min(*self.cri_target.get_q1_q2(next_s, next_a))
                q_label = reward + mask * (next_q + next_logprob * alpha)
            q1, q2 = self.cri.get_q1_q2(state, action)
            obj_critic = self.criterion(q1, q_label) + self.criterion(q2, q_label)

            self.cri_optimizer.zero_grad()
            obj_critic.backward()
            self.cri_optimizer.step()
            self.soft_update(self.cri_target, self.cri)

            action_pg, logprob = self.act.get_action_logprob(state)  # policy gradient
            obj_alpha = (self.alpha_log * (logprob - self.target_entropy).detach()).mean()
            self.alpha_optimizer.zero_grad()
            obj_alpha.backward()
            self.alpha_optimizer.step()

            alpha = self.alpha_log.exp().detach()
            obj_actor = -(torch.min(*self.cri_target.get_q1_q2(state, action_pg)) + logprob * alpha).mean()

            self.act_optimizer.zero_grad()
            obj_actor.backward()
            self.act_optimizer.step()

        return alpha.item(), obj_critic.item()
示例#2
0
class AgentTD3(AgentDDPG):
    def __init__(self):
        super().__init__()
        self.explore_noise = 0.1  # standard deviation of explore noise
        self.policy_noise = 0.2  # standard deviation of policy noise
        self.update_freq = 2  # delay update frequency

    def init(self, net_dim, state_dim, action_dim):
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")

        self.cri = CriticTwin(net_dim, state_dim, action_dim).to(self.device)
        self.cri_target = CriticTwin(net_dim, state_dim,
                                     action_dim).to(self.device)

        self.act_optimizer = torch.optim.Adam(self.act.parameters(),
                                              lr=self.learning_rate)
        self.cri_optimizer = torch.optim.Adam(self.cri.parameters(),
                                              lr=self.learning_rate)

    def update_net(self, buffer, target_step, batch_size,
                   repeat_times) -> (float, float):
        buffer.update_now_len_before_sample()

        obj_critic = obj_actor = None
        for i in range(int(target_step * repeat_times)):
            obj_critic, state = self.get_obj_critic(buffer, batch_size)

            self.cri_optimizer.zero_grad()
            obj_critic.backward()
            self.cri_optimizer.step()

            q_value_pg = self.act(state)  # policy gradient
            obj_actor = -self.cri_target(state, q_value_pg).mean()

            self.act_optimizer.zero_grad()
            obj_actor.backward()
            self.act_optimizer.step()
            if i % self.update_freq == 0:  # delay update
                self.soft_update(self.cri_target, self.cri,
                                 self.soft_update_tau)
                self.soft_update(self.act_target, self.act,
                                 self.soft_update_tau)

        return obj_actor.item(), obj_critic.item() / 2

    def get_obj_critic(self, buffer,
                       batch_size) -> (torch.Tensor, torch.Tensor):
        with torch.no_grad():
            reward, mask, action, state, next_s = buffer.sample_batch(
                batch_size)
            next_a = self.act_target.get_action(
                next_s, self.policy_noise)  # policy noise
            next_q = torch.min(*self.cri_target.get_q1_q2(
                next_s, next_a))  # twin critics
            q_label = reward + mask * next_q
        q1, q2 = self.cri.get_q1_q2(state, action)
        obj_critic = self.criterion(q1, q_label) + self.criterion(
            q2, q_label)  # twin critics
        return obj_critic, state
示例#3
0
    def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4):
        super().__init__()
        self.target_entropy = np.log(action_dim)
        self.alpha_log = torch.tensor(
            (-np.log(action_dim) * np.e, ),
            dtype=torch.float32,
            requires_grad=True,
            device=self.device)  # trainable parameter

        self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device)
        self.act_target = deepcopy(self.act)
        self.cri = CriticTwin(
            int(net_dim * 1.25),
            state_dim,
            action_dim,
        ).to(self.device)
        self.cri_target = deepcopy(self.cri)

        self.criterion = torch.nn.SmoothL1Loss()
        self.optimizer = torch.optim.Adam([{
            'params': self.act.parameters(),
            'lr': learning_rate * 0.75
        }, {
            'params': self.cri.parameters(),
            'lr': learning_rate * 1.25
        }, {
            'params': (self.alpha_log, ),
            'lr': learning_rate
        }])
示例#4
0
class AgentTD3(AgentBase):
    def __init__(self):
        super().__init__()
        self.explore_noise = 0.1  # standard deviation of explore noise
        self.policy_noise = 0.2  # standard deviation of policy noise
        self.update_freq = 2  # delay update frequency

    def init(self, net_dim, state_dim, action_dim):
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")

        self.cri = CriticTwin(net_dim, state_dim, action_dim).to(self.device)
        self.cri_target = deepcopy(self.cri)

        self.criterion = torch.nn.MSELoss()
        self.act_optimizer = torch.optim.Adam(self.act.parameters(),
                                              lr=self.learning_rate)
        self.cri_optimizer = torch.optim.Adam(self.cri.parameters(),
                                              lr=self.learning_rate)

    def select_action(self, state):
        states = torch.as_tensor((state, ),
                                 dtype=torch.float32,
                                 device=self.device).detach_()
        action = self.act(states)[0]
        action = (action +
                  torch.randn_like(action) * self.explore_noise).clamp(-1, 1)
        return action.cpu().numpy()

    def update_net(self, buffer, target_step, batch_size, repeat_times):
        buffer.update_now_len_before_sample()

        obj_critic = obj_actor = None
        for i in range(int(target_step * repeat_times)):
            with torch.no_grad():
                reward, mask, action, state, next_s = buffer.sample_batch(
                    batch_size)
                next_a = self.act_target.get_action(next_s, self.policy_noise)
                next_q = torch.min(*self.cri_target.get_q1_q2(
                    next_s, next_a))  # twin critics
                q_label = reward + mask * next_q
            q1, q2 = self.cri.get_q1_q2(state, action)
            obj_critic = self.criterion(q1, q_label) + self.criterion(
                q2, q_label)  # twin critics

            self.cri_optimizer.zero_grad()
            obj_critic.backward()
            self.cri_optimizer.step()

            q_value_pg = self.act(state)  # policy gradient
            obj_actor = -self.cri_target(state, q_value_pg).mean()

            self.act_optimizer.zero_grad()
            obj_actor.backward()
            self.act_optimizer.step()
            if i % self.update_freq == 0:  # delay update
                self.soft_update(self.cri_target, self.cri)
                self.soft_update(self.act_target, self.act)

        return obj_actor.item(), obj_critic.item() / 2
示例#5
0
    def init(self, net_dim, state_dim, action_dim):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        self.cri = CriticTwin(net_dim, state_dim, action_dim).to(self.device)
        self.cri_target = CriticTwin(net_dim, state_dim, action_dim).to(self.device)

        self.act_optimizer = torch.optim.Adam(self.act.parameters(), lr=self.learning_rate)
        self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), lr=self.learning_rate)
示例#6
0
    def init(self, net_dim, state_dim, action_dim):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.target_entropy = np.log(action_dim)
        self.alpha_log = torch.tensor((-np.log(action_dim) * np.e,), dtype=torch.float32,
                                      requires_grad=True, device=self.device)  # trainable parameter

        self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device)  # SAC don't use act_target
        self.cri = CriticTwin(int(net_dim * 1.25), state_dim, action_dim).to(self.device)
        self.cri_target = CriticTwin(int(net_dim * 1.25), state_dim, action_dim).to(self.device)

        self.act_optimizer = torch.optim.Adam(self.act.parameters(), lr=self.learning_rate)
        self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), lr=self.learning_rate)
        self.alpha_optimizer = torch.optim.Adam((self.alpha_log,), self.learning_rate)
示例#7
0
    def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4):
        super().__init__(net_dim, state_dim, action_dim, learning_rate)
        self.explore_noise = 0.1  # standard deviation of explore noise
        self.policy_noise = 0.2  # standard deviation of policy noise
        self.update_freq = 2  # delay update frequency, for soft target update

        self.cri = CriticTwin(net_dim, state_dim, action_dim).to(self.device)
        self.cri_target = deepcopy(self.cri)

        self.optimizer = torch.optim.Adam([{
            'params': self.act.parameters(),
            'lr': learning_rate
        }, {
            'params': self.cri.parameters(),
            'lr': learning_rate
        }])
示例#8
0
class AgentTD3(AgentDDPG):
    def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4):
        super().__init__(net_dim, state_dim, action_dim, learning_rate)
        self.explore_noise = 0.1  # standard deviation of explore noise
        self.policy_noise = 0.2  # standard deviation of policy noise
        self.update_freq = 2  # delay update frequency, for soft target update

        self.cri = CriticTwin(net_dim, state_dim, action_dim).to(self.device)
        self.cri_target = deepcopy(self.cri)

        self.optimizer = torch.optim.Adam([{
            'params': self.act.parameters(),
            'lr': learning_rate
        }, {
            'params': self.cri.parameters(),
            'lr': learning_rate
        }])

    def update_net(self, buffer, max_step, batch_size, repeat_times):
        buffer.update__now_len__before_sample()

        obj_critic = obj_actor = None
        for i in range(int(max_step * repeat_times)):
            with torch.no_grad():
                reward, mask, action, state, next_s = buffer.random_sample(
                    batch_size)
                next_a = self.act_target.get_action(
                    next_s, self.policy_noise)  # policy noise
                next_q = torch.min(*self.cri_target.get__q1_q2(
                    next_s, next_a))  # twin critics
                q_label = reward + mask * next_q
            q1, q2 = self.cri.get__q1_q2(state, action)
            obj_critic = self.criterion(q1, q_label) + self.criterion(
                q2, q_label)  # twin critics

            q_value_pg = self.act(state)  # policy gradient
            obj_actor = -self.cri_target(state, q_value_pg).mean()

            obj_united = obj_actor + obj_critic  # objective
            self.optimizer.zero_grad()
            obj_united.backward()
            self.optimizer.step()

            if i % self.update_freq == 0:  # delay update
                soft_target_update(self.cri_target, self.cri)
                soft_target_update(self.act_target, self.act)
        return obj_actor.item(), obj_critic.item() / 2
示例#9
0
class AgentSAC(AgentBase):
    def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4):
        super().__init__()
        self.target_entropy = np.log(action_dim)
        self.alpha_log = torch.tensor(
            (-np.log(action_dim) * np.e, ),
            dtype=torch.float32,
            requires_grad=True,
            device=self.device)  # trainable parameter

        self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device)
        self.act_target = deepcopy(self.act)
        self.cri = CriticTwin(
            int(net_dim * 1.25),
            state_dim,
            action_dim,
        ).to(self.device)
        self.cri_target = deepcopy(self.cri)

        self.criterion = torch.nn.SmoothL1Loss()
        self.optimizer = torch.optim.Adam([{
            'params': self.act.parameters(),
            'lr': learning_rate * 0.75
        }, {
            'params': self.cri.parameters(),
            'lr': learning_rate * 1.25
        }, {
            'params': (self.alpha_log, ),
            'lr': learning_rate
        }])

    def select_actions(self, states):  # states = (state, ...)
        states = torch.as_tensor(states,
                                 dtype=torch.float32,
                                 device=self.device)
        actions = self.act.get_action(states)
        return actions.detach().cpu().numpy()

    def update_net(self, buffer, max_step, batch_size, repeat_times):
        buffer.update__now_len__before_sample()

        alpha = self.alpha_log.exp().detach()
        obj_actor = obj_critic = None
        for _ in range(int(max_step * repeat_times)):
            with torch.no_grad():
                reward, mask, action, state, next_s = buffer.random_sample(
                    batch_size)
                next_a, next_log_prob = self.act_target.get__action__log_prob(
                    next_s)
                next_q = torch.min(*self.cri_target.get__q1_q2(next_s, next_a))
                q_label = reward + mask * (next_q + next_log_prob * alpha)
            q1, q2 = self.cri.get__q1_q2(state, action)
            obj_critic = self.criterion(q1, q_label) + self.criterion(
                q2, q_label)

            action_pg, log_prob = self.act.get__action__log_prob(
                state)  # policy gradient
            obj_alpha = (self.alpha_log *
                         (log_prob - self.target_entropy).detach()).mean()

            alpha = self.alpha_log.exp().detach()
            with torch.no_grad():
                self.alpha_log[:] = self.alpha_log.clamp(-16, 2)
            obj_actor = -(
                torch.min(*self.cri_target.get__q1_q2(state, action_pg)) +
                log_prob * alpha).mean()

            obj_united = obj_critic + obj_alpha + obj_actor
            self.optimizer.zero_grad()
            obj_united.backward()
            self.optimizer.step()

            soft_target_update(self.cri_target, self.cri)
            soft_target_update(self.act_target, self.act)
        # return obj_actor.item(), obj_critic.item()
        return alpha.item(), obj_critic.item()