batch_size = 1 if args.resume is not None: # Load pretrained network params model.load_state_dict(torch.load(os.path.expanduser(args.resume))) dataset_mean = (143.97594, ) dataset_std = (44.264744, ) # Transformations to be applied to samples before feeding them to the network common_transforms = [ transforms.Normalize(mean=dataset_mean, std=dataset_std, inplace=True) ] train_transform = transforms.Compose(common_transforms + [ transforms.RandomCrop((128, 128)), # Use smaller patches for training transforms.RandomFlip(), transforms.AdditiveGaussianNoise(prob=0.5, sigma=0.1) ]) valid_transform = transforms.Compose(common_transforms + [transforms.RandomCrop((144, 144))]) # Specify data set train_dataset = SimpleNeuroData2d(train=True, transform=train_transform, out_channels=out_channels) valid_dataset = SimpleNeuroData2d(train=False, transform=valid_transform, out_channels=out_channels) # Set up optimization optimizer = optim.Adam(model.parameters(), weight_decay=0.5e-4, lr=lr,
try: # Assume it's a state_dict for the model model.load_state_dict(torch.load(os.path.expanduser(args.resume))) except _pickle.UnpicklingError as exc: # Assume it's a complete saved ScriptModule model = torch.jit.load(os.path.expanduser(args.resume), map_location=device) drop_func = transforms.DropIfTooMuchBG(bg_id=3, threshold=0.9) # Transformations to be applied to samples before feeding them to the network common_transforms = [ #transforms.Normalize(mean=dataset_mean, std=dataset_std), ] train_transform = transforms.Compose(common_transforms + [ transforms.RandomGrayAugment(channels=[0], prob=0.3), transforms.RandomGammaCorrection(gamma_std=0.25, gamma_min=0.25, prob=0.3), transforms.AdditiveGaussianNoise(sigma=0.05, channels=[0], prob=0.1), transforms.RandomBlurring({'probability': 0.1}), drop_func ]) valid_transform = transforms.Compose(common_transforms + []) # Specify data set aniso_factor = 2 # Anisotropy in z dimension. E.g. 2 means half resolution in z dimension. common_data_kwargs = { # Common options for training and valid sets. 'aniso_factor': aniso_factor, 'patch_shape': (48, 144, 144), 'num_classes': 6, # 'offset': (20, 46, 46), 'target_discrete_ix': [3, 4, 5] } type_args = list(range(len(input_h5data)))