示例#1
0
def parse_instance(default_module,
                   name,
                   instance,
                   self_instance=None,
                   parse_shape=False) -> "Object":
    from elichika.parser import values_builtin

    if values_builtin.is_builtin_chainer_link(instance):
        return Object(
            values_builtin.ChainerLinkInstance(default_module, instance))

    # need to check whether is value bool before check whether is value int
    if isinstance(instance, bool):
        return Object(BoolValue(instance))

    if isinstance(instance, int):
        return Object(NumberValue(instance))

    if isinstance(instance, np.int32):
        return Object(NumberValue(instance))

    if isinstance(instance, np.int64):
        return Object(NumberValue(instance))

    if isinstance(instance, float):
        return Object(NumberValue(instance))

    if isinstance(instance, np.float32):
        return Object(NumberValue(instance))

    if isinstance(instance, np.float64):
        return Object(NumberValue(instance))

    if isinstance(instance, str):
        return Object(StrValue(instance))

    if isinstance(instance, list):
        if parse_shape:
            return Object(ListValue())
        else:
            print('List is not supported now!!!')
            return Object(NumberValue(0.0))

    if instance is inspect._empty:
        return None

    if inspect.isfunction(instance):
        func = UserDefinedFunction(instance)
        return Object(FuncValue(func, self_instance))

    if inspect.ismethod(instance):
        func = UserDefinedFunction(instance)
        return Object(FuncValue(func, self_instance))

    if inspect.isclass(instance):
        func = functions.UserDefinedClassConstructorFunction(instance)
        return Object(FuncValue(func, None))

    if isinstance(instance, tuple) and 'Undefined' in instance:
        shape = list(instance)
        shape = -1 if shape == 'Undefined' else shape
        tensorValue = TensorValue()
        tensorValue.shape = tuple(shape)
        return Object(tensorValue)

    if isinstance(instance, np.ndarray):
        tensorValue = TensorValue()
        tensorValue.value = instance
        tensorValue.shape = instance.shape
        return Object(tensorValue)

    if instance == inspect._empty:
        return Object(NoneValue())

    if instance is None:
        return Object(NoneValue())

    model_inst = UserDefinedInstance(default_module, instance, None,
                                     isinstance(instance, chainer.Link))
    return Object(model_inst)
示例#2
0
def parse_instance(default_module, name, instance, self_instance=None):
    from elichika.parser import values_builtin

    if values_builtin.is_builtin_chainer_link(instance):
        return values_builtin.ChainerLinkInstance(default_module, instance)

    # need to check whether is value bool before check whether is value int
    if isinstance(instance, bool):
        return BoolValue(instance)

    if isinstance(instance, int) or isinstance(instance, float):
        return NumberValue(instance)

    if isinstance(instance, str):
        return StrValue(instance)

    if isinstance(instance, list):
        ret = ListValue()
        ind = 0
        for e in instance:
            element_value = parse_instance(default_module, '', e)
            ret.get_field().get_attribute(str(ind)).revise(element_value)
            ind += 1
        return ret

    if instance is inspect._empty:
        return None

    if inspect.isfunction(instance):
        func = UserDefinedFunction(instance)
        return FuncValue(func, self_instance)

    if inspect.ismethod(instance):
        func = UserDefinedFunction(instance)
        return FuncValue(func, self_instance)

    if inspect.isclass(instance):
        func = functions.UserDefinedClassConstructorFunction(instance)
        return FuncValue(func, None)

    if isinstance(instance, tuple) and 'Undefined' in instance:
        shape = list(instance)
        shape = -1 if shape == 'Undefined' else shape
        tensorValue = TensorValue()
        tensorValue.shape = tuple(shape)
        return tensorValue

    if isinstance(instance, np.ndarray):
        tensorValue = TensorValue()
        tensorValue.value = instance
        tensorValue.shape = instance.shape
        return tensorValue

    if instance == inspect._empty:
        return NoneValue()

    if instance is None:
        return NoneValue()

    model_inst = UserDefinedInstance(default_module, instance, None,
                                     isinstance(instance, chainer.Link))
    return model_inst
示例#3
0
def parse_instance(default_module, name, instance, self_instance=None, parse_shape=False, from_member = False) -> "ValueRef":

    for converter in instance_converters:
        ret = converter(default_module, instance)
        if ret is not None:
            return ValueRef(ret)

    if inspect.ismethod(instance) or inspect.isfunction(instance):
        if instance in function_converters.keys():
            func = function_converters[instance]
            return ValueRef(func)

    # need to check whether is value bool before check whether is value int
    if isinstance(instance, bool):
        return ValueRef(BoolValue(instance))

    if isinstance(instance, int):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, np.int32):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, np.int64):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, float):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, np.float32):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, np.float64):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, str):
        return ValueRef(StrValue(instance))

    if isinstance(instance, list):
        if parse_shape:
            return ValueRef(ListValue())
        else:
            print('List is not supported now!!!')
            return ValueRef(NumberValue(0.0))

    if instance is inspect._empty:
        return None

    if inspect.ismethod(instance):
        func = UserDefinedFunction(instance)
        return ValueRef(FuncValue(func, self_instance))

    if inspect.isfunction(instance):
        func = UserDefinedFunction(instance)
        if from_member:
            return ValueRef(FuncValue(func, self_instance))
        else:
            return ValueRef(FuncValue(func, None))

    if inspect.isclass(instance):
        func = functions.UserDefinedClassConstructorFunction(instance)
        return ValueRef(FuncValue(func, None))

    if isinstance(instance, tuple) and 'Undefined' in instance:
        shape = list(instance)
        shape = -1 if shape == 'Undefined' else shape
        tensorValue = TensorValue()
        tensorValue.shape = tuple(shape)
        return ValueRef(tensorValue)

    if isinstance(instance, tuple):
        value_in_tuple = []
        for v in instance:
            o = parse_instance(default_module, '', v)
            value_in_tuple.append(o)

        return ValueRef(TupleValue(value_in_tuple))

    if isinstance(instance, np.ndarray):
        tensorValue = TensorValue(instance)
        tensorValue.value = instance
        tensorValue.shape = instance.shape
        return ValueRef(tensorValue)

    if instance == inspect._empty:
        return ValueRef(NoneValue())

    if instance is None:
        return ValueRef(NoneValue())

    model_inst = UserDefinedInstance(
        default_module, instance, None, isinstance(instance, chainer.Link))
    return ValueRef(model_inst)
示例#4
0
def parse_instance(default_module, name, instance, self_instance=None, from_member = False, root_graph : 'graphs.Graph' = None) -> "ValueRef":

    for converter in instance_converters:
        ret = converter(default_module, instance)
        if ret is not None:
            return ValueRef(ret)

    if inspect.ismethod(instance) or inspect.isfunction(instance):
        if instance in function_converters.keys():
            func = function_converters[instance]
            return ValueRef(func)

    # need to check whether is value bool before check whether is value int
    if isinstance(instance, bool):
        return ValueRef(BoolValue(instance))

    if isinstance(instance, int):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, np.int32):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, np.int64):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, float):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, np.float32):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, np.float64):
        return ValueRef(NumberValue(instance))

    if isinstance(instance, str):
        return ValueRef(StrValue(instance))

    if instance is inspect._empty:
        return None

    if inspect.ismethod(instance):
        func = UserDefinedFunction(instance)
        return ValueRef(FuncValue(func, self_instance))

    if inspect.isfunction(instance):
        func = UserDefinedFunction(instance)
        if from_member:
            return ValueRef(FuncValue(func, self_instance))
        else:
            return ValueRef(FuncValue(func, None))

    if inspect.isclass(instance):
        func = functions.UserDefinedClassConstructorFunction(instance)
        return ValueRef(FuncValue(func, None))

    if isinstance(instance, list):
        if root_graph is None:
            value_in_tuple = []
            for v in instance:
                o = parse_instance(default_module, '', v)
                value_in_tuple.append(o)
            ret = ListValue(value_in_tuple)
        else:
            value_in_tuple = []
            vs = []
            for v in instance:
                o = parse_instance(default_module, '', v)
                value_in_tuple.append(o)
                value = o.get_value()

                if isinstance(value, TupleValue):
                    assert(False)

                if isinstance(value, ListValue):
                    assert(False)

                vs.append(value)

            node = nodes.NodeGenerate('List', vs)
            ret = ListValue(value_in_tuple)
            node.set_outputs([ret])
            root_graph.add_initial_node(node)

        ret.estimate_type()
        return ValueRef(ret)

    if isinstance(instance, tuple) and 'Undefined' in instance:
        shape = list(instance)
        shape = -1 if shape == 'Undefined' else shape
        tensorValue = TensorValue()
        tensorValue.shape = tuple(shape)
        return ValueRef(tensorValue)

    if isinstance(instance, tuple):
        if root_graph is None:
            value_in_tuple = []
            for v in instance:
                o = parse_instance(default_module, '', v)
                value_in_tuple.append(o)

            return ValueRef(TupleValue(value_in_tuple))
        else:
            value_in_tuple = []
            vs = []
            for v in instance:
                o = parse_instance(default_module, '', v)
                value_in_tuple.append(o)
                value = o.get_value()

                if isinstance(value, TupleValue):
                    assert(False)

                if isinstance(value, ListValue):
                    assert(False)

                vs.append(value)

            node = nodes.NodeGenerate('Tuple', vs)
            ret = TupleValue(value_in_tuple)
            node.set_outputs([ret])
            root_graph.add_initial_node(node)
            return ValueRef(ret)


    if isinstance(instance, np.ndarray):
        tensorValue = TensorValue(instance)
        tensorValue.value = instance
        tensorValue.shape = instance.shape
        return ValueRef(tensorValue)

    if instance == inspect._empty:
        return ValueRef(NoneValue())

    if instance is None:
        return ValueRef(NoneValue())

    model_inst = UserDefinedInstance(default_module, instance, None)
    return ValueRef(model_inst)