示例#1
0
                                             label_size, 0.3)
    iter_y = BvsbUtils.KNNClassifierResult(train_data[0], train_data[1],
                                           iter_data[0])  # KNN
    bvsbc = BvsbClassifier(train_data[0],
                           train_data[1],
                           iter_data[0],
                           iter_y,
                           test_data[0],
                           test_data[1],
                           iterNum=0.1)
    bvsbc.createELM(n_hidden=1000,
                    activation_func="tanh",
                    alpha=1.0,
                    random_state=0)
    bvsbc.X_test = test_data[0]
    bvsbc.Y_test = test_data[1]
    bvsbc.trainELMWithKNNButBvsb()

    print("+++++++++++++++++++")
    print(bvsbc.score(test_data[0], test_data[1]))

    acc_temp = bvsbc.score(test_data[0], test_data[1])  #记录每次的精度
    acc_rem.append(acc_temp)  #将每次的精度存入列表
print("*****************************************************")
for i in acc_rem:
    print(f'{i*100:0.2f}', )  #打印每次精度
acc_mean = np.mean(acc_rem)  #求出平均精度
print("**{:.2f}".format(acc_mean * 100))  #打印平均精度
print(
    '---------------------以上为ELM-KNN(本文)算法(10次)----------------------')  #运行程序
示例#2
0
data = datasets.load_digits()
stdc = StandardScaler()  # 均值归一化
label_size = 0.3

data.data = stdc.fit_transform(data.data / 16.0)
train, iter, test = elmUtils.splitDataWithIter(data.data, data.target,
                                               label_size, 0.2)

Y_iter = BvsbUtils.KNNClassifierResult(train[0], train[1], iter[0])
print(Y_iter.size)

tic = time.perf_counter_ns()
bvsbc = BvsbClassifier(train[0],
                       train[1],
                       iter[0],
                       Y_iter,
                       test[0],
                       test[1],
                       iterNum=0.1)
bvsbc.createELM(n_hidden=1000,
                activation_func="sigmoid",
                alpha=1.0,
                random_state=0)
bvsbc.X_test = test[0]
bvsbc.Y_test = test[1]
bvsbc.trainELMWithKNNButBvsb()
toc = time.perf_counter_ns()

print(bvsbc.score(test[0], test[1]))
print("ELM-BVSB 项目用时:%d" % ((toc - tic) / 1000 / 1000))