示例#1
0
def center_bias(x, img_rows, img_cols, downsampling_factor_net, downsampling_factor_product, out_name=None, elt_name=None):
    rows_elt = math.ceil(img_rows / downsampling_factor_net) // downsampling_factor_product
    cols_elt = math.ceil(img_cols / downsampling_factor_net) // downsampling_factor_product
    eltprod = EltWiseProduct(init='zero',
                             trainable=True,
                             W_regularizer=l2(1/(rows_elt*cols_elt*N_CAT)),
                             name=elt_name)(x)
    output_ml_net = Activation('relu', name=out_name)(eltprod)

    return output_ml_net
def ml_net_model(img_rows=480,
                 img_cols=640,
                 downsampling_factor_net=8,
                 downsampling_factor_product=10):
    f = h5py.File("vgg16_weights.h5")

    input_ml_net = Input(shape=(3, img_rows, img_cols))

    #########################################################
    # FEATURE EXTRACTION NETWORK							#
    #########################################################
    weights = get_weights_vgg16(f, 1)
    conv1_1 = Convolution2D(64,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(input_ml_net)
    weights = get_weights_vgg16(f, 3)
    conv1_2 = Convolution2D(64,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv1_1)
    conv1_pool = MaxPooling2D((2, 2), strides=(2, 2),
                              border_mode='same')(conv1_2)

    weights = get_weights_vgg16(f, 6)
    conv2_1 = Convolution2D(128,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv1_pool)
    weights = get_weights_vgg16(f, 8)
    conv2_2 = Convolution2D(128,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv2_1)
    conv2_pool = MaxPooling2D((2, 2), strides=(2, 2),
                              border_mode='same')(conv2_2)

    weights = get_weights_vgg16(f, 11)
    conv3_1 = Convolution2D(256,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv2_pool)
    weights = get_weights_vgg16(f, 13)
    conv3_2 = Convolution2D(256,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv3_1)
    weights = get_weights_vgg16(f, 15)
    conv3_3 = Convolution2D(256,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv3_2)
    conv3_pool = MaxPooling2D((2, 2), strides=(2, 2),
                              border_mode='same')(conv3_3)

    weights = get_weights_vgg16(f, 18)
    conv4_1 = Convolution2D(512,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv3_pool)
    weights = get_weights_vgg16(f, 20)
    conv4_2 = Convolution2D(512,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv4_1)
    weights = get_weights_vgg16(f, 22)
    conv4_3 = Convolution2D(512,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv4_2)
    conv4_pool = MaxPooling2D((2, 2), strides=(1, 1),
                              border_mode='same')(conv4_3)

    weights = get_weights_vgg16(f, 25)
    conv5_1 = Convolution2D(512,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv4_pool)
    weights = get_weights_vgg16(f, 27)
    conv5_2 = Convolution2D(512,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv5_1)
    weights = get_weights_vgg16(f, 29)
    conv5_3 = Convolution2D(512,
                            3,
                            3,
                            weights=weights,
                            activation='relu',
                            border_mode='same')(conv5_2)

    #########################################################
    # ENCODING NETWORK										#
    #########################################################
    concatenated = merge([conv3_pool, conv4_pool, conv5_3],
                         mode='concat',
                         concat_axis=1)
    dropout = Dropout(0.5)(concatenated)

    int_conv = Convolution2D(64,
                             3,
                             3,
                             init='glorot_normal',
                             activation='relu',
                             border_mode='same')(dropout)

    pre_final_conv = Convolution2D(1,
                                   1,
                                   1,
                                   init='glorot_normal',
                                   activation='relu')(int_conv)

    #########################################################
    # PRIOR LEARNING										#
    #########################################################
    rows_elt = math.ceil(
        img_rows / downsampling_factor_net) // downsampling_factor_product
    cols_elt = math.ceil(
        img_cols / downsampling_factor_net) // downsampling_factor_product
    eltprod = EltWiseProduct(init='zero',
                             W_regularizer=l2(
                                 1 / (rows_elt * cols_elt)))(pre_final_conv)
    output_ml_net = Activation('relu')(eltprod)

    model = Model(input=[input_ml_net], output=[output_ml_net])

    for layer in model.layers:
        print(layer.input_shape, layer.output_shape)

    return model
示例#3
0
def build_model(img_rows=480,
                img_cols=640,
                downsampling_factor_net=8,
                downsampling_factor_product=10,
                use_pretrained=None,
                intermediate=False):
    input_ml_net = Input(shape=(3, img_rows, img_cols))
    conv1_1 = VGGConvLayer(64, vgg_layer=1)(input_ml_net)
    conv1_2 = VGGConvLayer(64, vgg_layer=3)(conv1_1)
    conv1_pool = MaxPooling2D((2, 2), strides=(2, 2),
                              border_mode='same')(conv1_2)

    conv2_1 = VGGConvLayer(128, vgg_layer=6)(conv1_pool)
    conv2_2 = VGGConvLayer(128, vgg_layer=8)(conv2_1)
    conv2_pool = MaxPooling2D((2, 2), strides=(2, 2),
                              border_mode='same')(conv2_2)

    conv3_1 = VGGConvLayer(256, vgg_layer=11)(conv2_pool)
    conv3_2 = VGGConvLayer(256, vgg_layer=13)(conv3_1)
    conv3_3 = VGGConvLayer(256, vgg_layer=15)(conv3_2)
    conv3_pool = MaxPooling2D((2, 2), strides=(2, 2),
                              border_mode='same')(conv3_3)

    conv4_1 = VGGConvLayer(512, vgg_layer=18)(conv3_pool)
    conv4_2 = VGGConvLayer(512, vgg_layer=20)(conv4_1)
    conv4_3 = VGGConvLayer(512, vgg_layer=22)(conv4_2)
    conv4_pool = MaxPooling2D((2, 2), strides=(1, 1),
                              border_mode='same')(conv4_3)

    conv5_1 = VGGConvLayer(512, vgg_layer=25)(conv4_pool)
    conv5_2 = VGGConvLayer(512, vgg_layer=27)(conv5_1)
    conv5_3 = VGGConvLayer(512, vgg_layer=29)(conv5_2)

    concatenated = merge([conv3_pool, conv4_pool, conv5_3],
                         mode='concat',
                         concat_axis=1)
    dropout = Dropout(0.5)(concatenated)

    int_conv = Convolution2D(64,
                             3,
                             3,
                             init='glorot_normal',
                             activation='relu',
                             border_mode='same',
                             trainable=True,
                             name='int_conv')(dropout)

    pre_final_conv = Convolution2D(1,
                                   1,
                                   1,
                                   init='glorot_normal',
                                   activation='relu',
                                   name='pre_final_conv')(int_conv)

    rows_elt = math.ceil(
        img_rows / downsampling_factor_net) // downsampling_factor_product
    cols_elt = math.ceil(
        img_cols / downsampling_factor_net) // downsampling_factor_product
    eltprod = EltWiseProduct(init='zero',
                             trainable=True,
                             W_regularizer=l2(1 / (rows_elt * cols_elt)),
                             name='eltprod')(pre_final_conv)
    output_ml_net = Activation('relu')(eltprod)

    model = Model(input=[input_ml_net], output=[output_ml_net])

    # load pretrained weights
    if use_pretrained == 'mlnet':
        model.load_weights('models/mlnet_salicon_weights.pkl')
    elif use_pretrained == 'my':
        model.load_weights('models/generalist_finetune.h5')
    elif use_pretrained is None:
        return model
    else:
        raise StandardError('INVALID use_pretrained')

    if intermediate:
        # still has correct weights
        model = Model(input=[input_ml_net], output=[concatenated])

    return model