示例#1
0
    def plot_seq_effects(self):
	for t,tag in enumerate(self.tags):
	    # Analyze each individual trial code (i.e. what was the previous trial?)
	    data_mean, data_sem = emergent.group_batch(self.data_settled[tag], ['prev_trial_code', 'inhibited', 'SS_presented'])
	    # Select those where a response was made and no stop signal was presented
	    idx = (data_mean['inhibited'] == 0.0) & (data_mean['SS_presented'] == 0.0) & ((data_mean['prev_trial_code'] != 1) )
            #data_mean[idx]['prev_trial_code']
	    plt.errorbar([0,1,2], data_mean[idx]['minus_cycles']*self.ms, color=self.colors[t], yerr=data_sem[idx]['minus_cycles']*self.ms, label=tag, lw=3)
	    #plt.title('RTs depending on previous trial')
	    plt.xticks(np.arange(len(self.pt_code.values())), self.pt_code.values())
	    plt.ylabel('RTs (ms)')
	    plt.xlabel('Previous Trial Type')
	    plt.legend(loc=0)
	    plt.xlim((-.5, 2.5))
示例#2
0
    def plot_seq_effects(self):
	for t,tag in enumerate(self.tags):
	    # Analyze each individual trial code (i.e. what was the previous trial?)
	    data_mean, data_sem = emergent.group_batch(self.data_settled[tag], ['prev_trial_code', 'inhibited', 'SS_presented'])
	    # Select those where a response was made and no stop signal was presented
	    idx = (data_mean['inhibited'] == 0.0) & (data_mean['SS_presented'] == 0.0) & ((data_mean['prev_trial_code'] != 1) )
            #data_mean[idx]['prev_trial_code']
	    plt.errorbar([0,1,2], data_mean[idx]['minus_cycles']*self.ms, color=self.colors[t], yerr=data_sem[idx]['minus_cycles']*self.ms, label=tag, lw=3)
	    #plt.title('RTs depending on previous trial')
	    plt.xticks(np.arange(len(self.pt_code.values())), self.pt_code.values())
	    plt.ylabel('RTs (ms)')
	    plt.xlabel('Previous Trial Type')
	    plt.legend(loc=0)
	    plt.xlim((-.5, 2.5))
示例#3
0
    def analyze_act_stim_onset(self, name='SC', field='Thalam_unit_corr', tag='intact'):
        start_cycle = 0
	wind = (0,125)
        #wind = (100,100)
        # From emergent, SC threshold:
        data_grp_mean, data_grp_sem = emergent.group_batch(self.data['trl'][tag], ['SS_presented'])


        idx = data_grp_mean['SS_presented'] == 1
        SSD = np.median(self.data_settled[tag]['SSD'])

        ss_resp = self.extract_cycles(
            tag,
            ((self.data['trl'][tag]['SS_presented'] == 1) &
             (self.data['trl'][tag]['inhibited'] == 0) &
             (self.data['trl'][tag]['epoch'] > 30) &
             (self.data['trl'][tag]['SSD'] == SSD)),
            field, cycle=start_cycle,
            #center='SSD',
            wind=wind)

        ss_inhib = self.extract_cycles(
            tag,
            ((self.data['trl'][tag]['SS_presented'] == 1) &
             (self.data['trl'][tag]['inhibited'] == 1) &
             (self.data['trl'][tag]['epoch'] > 30) &
             (self.data['trl'][tag]['SSD'] == SSD)),
            field, cycle=start_cycle,
            #center='SSD',
            wind=wind)

        x=np.linspace(wind[0]+start_cycle,wind[1]+start_cycle,np.sum(wind)+1)*self.ms

        #thr_cross = np.where(np.mean(thalam_ss_resp, axis=0) > thr)[0][0]
        plt.plot(x, np.mean(ss_inhib, axis=0), label='canceled stop trials', color='.7', lw=3.)
        plt.plot(x, np.mean(ss_resp, axis=0), label='non-canceled stop trials', color='k', lw=3.)

        plt.axhline(y=self.SC_thr, color='k', lw=3., linestyle='-.')
        #plt.axvline(x=thr_cross, color='k')
        #plt.axvline(x=np.mean(self.SSD['intact'])+np.mean(self.SSRT['intact']), color='k')
        #plt.axvline(x=np.mean(self.SSD['intact']), color='k')
        plt.axvline(x=SSD*self.ms, color='k', lw=3.)
        plt.axvline(x=(SSD + np.mean(self.SSRT[tag]))*self.ms, color='k', linestyle='--', lw=2.)

        plt.ylim(0,1)
        plt.xlabel('Time from Target Onset (ms)')
        plt.ylabel('%s activity' % name)
        #plt.title('SC activity during inhibited and not-inhibited stop trials: %s'%tag)
        plt.legend(loc=0)
示例#4
0
    def analyze_act_stim_onset(self, name='SC', field='Thalam_unit_corr', tag='intact'):
        start_cycle = 0
	wind = (0,125)
        #wind = (100,100)
        # From emergent, SC threshold:
        data_grp_mean, data_grp_sem = emergent.group_batch(self.data['trl'][tag], ['SS_presented'])


        idx = data_grp_mean['SS_presented'] == 1
        SSD = np.median(self.data_settled[tag]['SSD'])

        ss_resp = self.extract_cycles(
            tag,
            ((self.data['trl'][tag]['SS_presented'] == 1) &
             (self.data['trl'][tag]['inhibited'] == 0) &
             (self.data['trl'][tag]['epoch'] > 30) &
             (self.data['trl'][tag]['SSD'] == SSD)),
            field, cycle=start_cycle,
            #center='SSD',
            wind=wind)

        ss_inhib = self.extract_cycles(
            tag,
            ((self.data['trl'][tag]['SS_presented'] == 1) &
             (self.data['trl'][tag]['inhibited'] == 1) &
             (self.data['trl'][tag]['epoch'] > 30) &
             (self.data['trl'][tag]['SSD'] == SSD)),
            field, cycle=start_cycle,
            #center='SSD',
            wind=wind)

        x=np.linspace(wind[0]+start_cycle,wind[1]+start_cycle,np.sum(wind)+1)*self.ms

        #thr_cross = np.where(np.mean(thalam_ss_resp, axis=0) > thr)[0][0]
        plt.plot(x, np.mean(ss_inhib, axis=0), label='canceled stop trials', color='.7', lw=3.)
        plt.plot(x, np.mean(ss_resp, axis=0), label='non-canceled stop trials', color='k', lw=3.)

        plt.axhline(y=self.SC_thr, color='k', lw=3., linestyle='-.')
        #plt.axvline(x=thr_cross, color='k')
        #plt.axvline(x=np.mean(self.SSD['intact'])+np.mean(self.SSRT['intact']), color='k')
        #plt.axvline(x=np.mean(self.SSD['intact']), color='k')
        plt.axvline(x=SSD*self.ms, color='k', lw=3.)
        plt.axvline(x=(SSD + np.mean(self.SSRT[tag]))*self.ms, color='k', linestyle='--', lw=2.)

        plt.ylim(0,1)
        plt.xlabel('Time from Target Onset (ms)')
        plt.ylabel('%s activity' % name)
        #plt.title('SC activity during inhibited and not-inhibited stop trials: %s'%tag)
        plt.legend(loc=0)
示例#5
0
    def analyze_SC_act_ind(self, SSDs=None, tag=None, plot_ind=False):
        if tag is None:
            tag = 'intact'
	wind = (0,100)
        start_cycle = 25
        skip_epochs = 20
        if SSDs is None:
            SSDs = np.unique(self.data['trl']['intact']['SSD'])
        for SSD in SSDs:
            data_grp_mean, data_grp_sem = emergent.group_batch(self.data['trl'][tag], ['SS_presented'])

            idx = data_grp_mean['SS_presented'] == 1
            SSD_mean = data_grp_mean[idx]['SSD']

            # Select responded and inhibited trials
            resp = ((self.data['trl'][tag]['inhibited'] == 0) &
                       (self.data['trl'][tag]['SSD'] == SSD) &
                       (self.data['trl'][tag]['epoch'] > skip_epochs))
            ss_resp = ((self.data['trl'][tag]['SS_presented'] == 1) &
                       (self.data['trl'][tag]['inhibited'] == 0) &
                       (self.data['trl'][tag]['SSD'] == SSD) &
                       (self.data['trl'][tag]['epoch'] > skip_epochs))
            ss_inhib = ((self.data['trl'][tag]['SS_presented'] == 1) &
                        (self.data['trl'][tag]['inhibited'] == 1) &
                        (self.data['trl'][tag]['SSD'] == SSD) &
                        (self.data['trl'][tag]['epoch'] > skip_epochs))

            # Calculate proportion of inhibited vs error trials
            mean_ss_resp = (np.sum(ss_inhib)/np.sum(((self.data['trl'][tag]['SS_presented'] == 1) &
                                                                         (self.data['trl'][tag]['SSD'] == SSD) &
                                                                         (self.data['trl'][tag]['epoch'] > skip_epochs))))

            print "Mean responded trials: %f" % mean_ss_resp

            if mean_ss_resp == 0. or mean_ss_resp == 1.:
                continue # No need to plot SSDs to which no or all responses where inhibited.

            self.new_fig()
            thalam_ss_resp = self.extract_cycles(tag, resp, 'Thalam_unit_corr', cycle=start_cycle, wind=wind)

            thalam_ss_inhib = self.extract_cycles(tag, ss_inhib, 'Thalam_unit_corr', cycle=start_cycle, wind=wind)

            x=np.linspace(wind[0]+start_cycle,wind[1]+start_cycle,np.sum(wind)+1)

            #thr_cross = np.where(np.mean(thalam_ss_resp, axis=0) > thr)[0][0]
            self.plot_filled(x, thalam_ss_inhib, label='SS_inhib', color='g')
            self.plot_filled(x, thalam_ss_resp, label='SS_resp', color='r')

            plt.axhline(y=self.SC_thr, color='k')
            plt.axvline(x=SSD, color='k')
            plt.axvline(x=SSD + np.mean(self.SSRT['intact']), color='k')

            plt.xlabel('Stop-Signal')
            plt.ylabel('Average SC activity')
            plt.title('SC activity during inhibited and not-inhibited stop trials\n: %s, SSD: %i, mean response rate: %f'%(tag, SSD, mean_ss_resp))
            plt.legend(loc=0)

            if plot_ind:
                self.new_fig()
                self.plot_filled(x, thalam_ss_inhib, avg=False, label='SS_inhib', color='g')
                self.plot_filled(x, thalam_ss_resp, avg=False, label='SS_resp', color='r')

                plt.axhline(y=self.SC_thr, color='k')
                plt.axvline(x=SSD, color='k')
                plt.axvline(x=SSD + np.mean(self.SSRT['intact']), color='k')

                plt.xlabel('Stop-Signal')
                plt.ylabel('Average SC activity')
                plt.title('SC activity during inhibited and not-inhibited stop trials\n: %s, SSD: %i, mean response rate: %f'%(tag, SSD, mean_ss_resp))
示例#6
0
    def analyze_SC_act_ind(self, SSDs=None, tag=None, plot_ind=False):
        if tag is None:
            tag = 'intact'
	wind = (0,100)
        start_cycle = 25
        skip_epochs = 20
        if SSDs is None:
            SSDs = np.unique(self.data['trl']['intact']['SSD'])
        for SSD in SSDs:
            data_grp_mean, data_grp_sem = emergent.group_batch(self.data['trl'][tag], ['SS_presented'])

            idx = data_grp_mean['SS_presented'] == 1
            SSD_mean = data_grp_mean[idx]['SSD']

            # Select responded and inhibited trials
            resp = ((self.data['trl'][tag]['inhibited'] == 0) &
                       (self.data['trl'][tag]['SSD'] == SSD) &
                       (self.data['trl'][tag]['epoch'] > skip_epochs))
            ss_resp = ((self.data['trl'][tag]['SS_presented'] == 1) &
                       (self.data['trl'][tag]['inhibited'] == 0) &
                       (self.data['trl'][tag]['SSD'] == SSD) &
                       (self.data['trl'][tag]['epoch'] > skip_epochs))
            ss_inhib = ((self.data['trl'][tag]['SS_presented'] == 1) &
                        (self.data['trl'][tag]['inhibited'] == 1) &
                        (self.data['trl'][tag]['SSD'] == SSD) &
                        (self.data['trl'][tag]['epoch'] > skip_epochs))

            # Calculate proportion of inhibited vs error trials
            mean_ss_resp = (np.sum(ss_inhib)/np.sum(((self.data['trl'][tag]['SS_presented'] == 1) &
                                                                         (self.data['trl'][tag]['SSD'] == SSD) &
                                                                         (self.data['trl'][tag]['epoch'] > skip_epochs))))

            print "Mean responded trials: %f" % mean_ss_resp

            if mean_ss_resp == 0. or mean_ss_resp == 1.:
                continue # No need to plot SSDs to which no or all responses where inhibited.

            self.new_fig()
            thalam_ss_resp = self.extract_cycles(tag, resp, 'Thalam_unit_corr', cycle=start_cycle, wind=wind)

            thalam_ss_inhib = self.extract_cycles(tag, ss_inhib, 'Thalam_unit_corr', cycle=start_cycle, wind=wind)

            x=np.linspace(wind[0]+start_cycle,wind[1]+start_cycle,np.sum(wind)+1)

            #thr_cross = np.where(np.mean(thalam_ss_resp, axis=0) > thr)[0][0]
            self.plot_filled(x, thalam_ss_inhib, label='SS_inhib', color='g')
            self.plot_filled(x, thalam_ss_resp, label='SS_resp', color='r')

            plt.axhline(y=self.SC_thr, color='k')
            plt.axvline(x=SSD, color='k')
            plt.axvline(x=SSD + np.mean(self.SSRT['intact']), color='k')

            plt.xlabel('Stop-Signal')
            plt.ylabel('Average SC activity')
            plt.title('SC activity during inhibited and not-inhibited stop trials\n: %s, SSD: %i, mean response rate: %f'%(tag, SSD, mean_ss_resp))
            plt.legend(loc=0)

            if plot_ind:
                self.new_fig()
                self.plot_filled(x, thalam_ss_inhib, avg=False, label='SS_inhib', color='g')
                self.plot_filled(x, thalam_ss_resp, avg=False, label='SS_resp', color='r')

                plt.axhline(y=self.SC_thr, color='k')
                plt.axvline(x=SSD, color='k')
                plt.axvline(x=SSD + np.mean(self.SSRT['intact']), color='k')

                plt.xlabel('Stop-Signal')
                plt.ylabel('Average SC activity')
                plt.title('SC activity during inhibited and not-inhibited stop trials\n: %s, SSD: %i, mean response rate: %f'%(tag, SSD, mean_ss_resp))