def train(net: SiameseEMG): gesture_list = list(range(8)) train_set = CapgTriplet(gesture_list, sequence_len=20, frame_x=False, train=True) net.dataset = train_set net.fit_with_dataset() return net
def main(train_args): # 1. 设置好optimizer # 2. 定义好model args = {**train_args, **hyperparameters} all_gestures = list(range(8)) model = SiameseLSTM(args['input_size'], args['hidden_size'], len(all_gestures), args['layer'], args['dropout']) name = args['name'] sub_folder = args['sub_folder'] # from emg.utils import config_tensorboard # tensorboard_cb = config_tensorboard(name, sub_folder, model, (1, 10, 128)) # # from emg.utils.lr_scheduler import DecayLR # lr_callback = DecayLR(start_lr=args['lr'], gamma=0.5, step_size=args['lr_step']) net = SiameseEMG(module=model, model_name=name, sub_folder=sub_folder, hyperparamters=args, optimizer=torch.optim.Adam, gesture_list=[], callbacks=[]) net = train(net)
def main(train_args, TEST_MODE=False): args = train_args all_gestures = list(range(20)) model = SiameseCNN(len(all_gestures)) name = args['name'] sub_folder = args['sub_folder'] # from emg.utils import config_tensorboard # tensorboard_cb = config_tensorboard(name, sub_folder) # # from emg.utils.lr_scheduler import DecayLR # lr_callback = DecayLR(start_lr=args['lr'], gamma=0.5, step_size=args['lr_step']) net = SiameseEMG(module=model, model_name=name, sub_folder=sub_folder, hyperparamters=args, optimizer=torch.optim.Adam, gesture_list=[], callbacks=[]) net = train(net)