示例#1
0
文件: emcnn.py 项目: livst/coca
def _deploy_network(args):
    #----------------------------------------
    # parse information from the prototxt files
    #----------------------------------------
    netFn = str(args.network)  # unicode->str to avoid caffe API problems
    netParam = caffe_pb2.NetParameter()
    text_format.Merge(open(netFn).read(), netParam)

    batchDim = emlib.infer_data_dimensions(netFn)
    assert (batchDim[2] == batchDim[3])  # tiles must be square
    print('[emCNN]: batch shape: %s' % str(batchDim))

    outDir = os.path.dirname(args.network)
    if not os.path.isdir(outDir):
        os.mkdir(outDir)

    #----------------------------------------
    # Create the Caffe network
    # Note this assumes a relatively recent PyCaffe
    #----------------------------------------
    phaseTest = 1  # 1 := test mode
    net = caffe.Net(netFn, args.model, phaseTest)
    _print_net(net)

    #----------------------------------------
    # Load data
    #----------------------------------------
    bs = border_size(batchDim)
    print "[emCNN]: loading deploy data..."
    Xdeploy, Ydeploy = _load_data(args.emDeployFile, args.labelsDeployFile,
                                  args, bs)
    print "[emCNN]: tile dimension is: %d" % bs

    #----------------------------------------
    # Do deployment & save results
    #----------------------------------------
    sys.stdout.flush()

    Mask = np.ones(Xdeploy.shape, dtype=np.bool)
    if Ydeploy is not None:
        Mask[Ydeploy < 0] = False
    Prob = predict(net, Xdeploy, Mask, batchDim)

    # discard mirrored edges and form class estimates
    Yhat = np.argmax(Prob, 0)
    Yhat[Mask == False] = -1
    Prob = prune_border_4d(Prob, bs)
    Yhat = prune_border_3d(Yhat, bs)

    # compute some metrics
    if Ydeploy is not None:
        acc, precision, recall = _binary_metrics(prune_border_3d(Ydeploy, bs),
                                                 Yhat)

        print('[emCNN]: Task performance:')
        print('         acc=%0.2f, precision=%0.2f, recall=%0.2f' %
              (acc, precision, recall))

    net.save(str(os.path.join(outDir, 'final.caffemodel')))
    np.save(os.path.join(outDir, 'YhatDeploy.npz'), Prob)
    scipy.io.savemat(os.path.join(outDir, 'YhatDeploy.mat'), {'Yhat': Prob})
    print('[emCNN]: deployment complete.')
示例#2
0
    # parse information from the prototxt files
    #----------------------------------------
    args = get_args()
        
    workDir, solverFn = os.path.split(args.solver)
    if len(workDir):
        os.chdir(workDir)

    solverParam = caffe_pb2.SolverParameter()
    text_format.Merge(open(solverFn).read(), solverParam)

    netFn = str(solverParam.net)          # unicode->str to avoid caffe API problems
    netParam = caffe_pb2.NetParameter()
    text_format.Merge(open(netFn).read(), netParam)
 
    batchDim = emlib.infer_data_dimensions(netFn)
    print('[deploy]: batch shape: %s' % str(batchDim))

    if len(args.outFileName):
        outFileName = args.outFileName
    else:
        outFileName = os.path.join(os.path.split(args.dataFileName)[0], 'Yhat_' + os.path.split(args.dataFileName)[-1])
    print('[deploy]: output file will be: %s' % outFileName)
 
    #----------------------------------------
    # Load and preprocess data set
    #----------------------------------------
    X = emlib.load_tiff_data(args.dataFileName, np.float32)

    # mirror edges of images so that every pixel in the original data set can act
    # as a center pixel of some tile    
示例#3
0
文件: emcnn.py 项目: livst/coca
def _train_network(args):
    #----------------------------------------
    # parse information from the prototxt files
    #----------------------------------------
    solverParam = caffe_pb2.SolverParameter()
    text_format.Merge(open(args.solver).read(), solverParam)

    netFn = solverParam.net
    netParam = caffe_pb2.NetParameter()
    text_format.Merge(open(netFn).read(), netParam)

    batchDim = emlib.infer_data_dimensions(netFn)
    assert (batchDim[2] == batchDim[3])  # tiles must be square
    print('[emCNN]: batch shape: %s' % str(batchDim))

    outDir = str(solverParam.snapshot_prefix)  # unicode -> str
    if not os.path.isdir(outDir):
        os.mkdir(outDir)

    # choose a synthetic data generating function
    if args.rotateData:
        syn_func = lambda V: _xform_minibatch(V, True)
        print(
            '[emCNN]:   WARNING: applying arbitrary rotations to data.  This may degrade performance in some cases...\n'
        )
    else:
        syn_func = lambda V: _xform_minibatch(V, False)

    #----------------------------------------
    # Create the Caffe solver
    # Note this assumes a relatively recent PyCaffe
    #----------------------------------------
    solver = caffe.SGDSolver(args.solver)
    _print_net(solver.net)

    #----------------------------------------
    # Load data
    #----------------------------------------
    bs = border_size(batchDim)
    print "[emCNN]: loading training data..."
    Xtrain, Ytrain = _load_data(args.emTrainFile, args.labelsTrainFile, args,
                                bs)
    print "[emCNN]: loading validation data..."
    Xvalid, Yvalid = _load_data(args.emValidFile, args.labelsValidFile, args,
                                bs)
    print "[emCNN]: tile dimension is: %d" % bs

    #----------------------------------------
    # Do training; save results
    #----------------------------------------
    trainInfo = TrainInfo(solverParam)
    sys.stdout.flush()

    while trainInfo.iter < solverParam.max_iter:
        print "[emCNN]: Starting epoch %d" % trainInfo.epoch
        train_one_epoch(solver,
                        Xtrain,
                        Ytrain,
                        trainInfo,
                        batchDim,
                        outDir,
                        omitLabels=args.omitLabels,
                        data_augment=syn_func)

        print "[emCNN]: Making predictions on validation data..."
        Mask = np.ones(Xvalid.shape, dtype=np.bool)
        Mask[Yvalid < 0] = False
        Prob = predict(solver.net, Xvalid, Mask, batchDim)

        # discard mirrored edges and form class estimates
        Yhat = np.argmax(Prob, 0)
        Yhat[Mask == False] = -1
        Prob = prune_border_4d(Prob, bs)
        Yhat = prune_border_3d(Yhat, bs)

        # compute some metrics
        acc, precision, recall = _binary_metrics(prune_border_3d(Yvalid, bs),
                                                 Yhat)

        print('[emCNN]:  Validation set performance:')
        print('         acc=%0.2f, precision=%0.2f, recall=%0.2f' %
              (acc, precision, recall))

        trainInfo.epoch += 1

    solver.net.save(str(os.path.join(outDir, 'final.caffemodel')))
    np.save(os.path.join(outDir, 'Yhat.npz'), Prob)
    scipy.io.savemat(os.path.join(outDir, 'Yhat.mat'), {'Yhat': Prob})
    print('[emCNN]: training complete.')
示例#4
0
def _deploy_network(args):
    """ Runs Caffe in deploy mode (where there is no solver).
    """

    #----------------------------------------
    # parse information from the prototxt files
    #----------------------------------------
    netFn = str(args.network)  # unicode->str to avoid caffe API problems
    netParam = caffe_pb2.NetParameter()
    text_format.Merge(open(netFn).read(), netParam)

    batchDim = emlib.infer_data_dimensions(netFn)
    assert(batchDim[2] == batchDim[3])  # tiles must be square
    print('[emCNN]: batch shape: %s' % str(batchDim))

    if args.outDir:
        outDir = args.outDir  # overrides default
    else: 
        # there is no snapshot dir in a network file, so default is
        # to just use the location of the network file.
        outDir = os.path.dirname(args.network)

    # Add a timestamped subdirectory.
    ts = datetime.datetime.now()
    subdir = "Deploy_%s_%02d:%02d" % (ts.date(), ts.hour, ts.minute)
    outDir = os.path.join(outDir, subdir)

    if not os.path.isdir(outDir):
        os.makedirs(outDir)
    print('[emCNN]: writing results to: %s' % outDir)

    # save the parameters we're using
    with open(os.path.join(outDir, 'params.txt'), 'w') as f:
        pprint(args, stream=f)

    #----------------------------------------
    # Create the Caffe network
    # Note this assumes a relatively recent PyCaffe
    #----------------------------------------
    phaseTest = 1  # 1 := test mode
    net = caffe.Net(netFn, args.model, phaseTest)

    #----------------------------------------
    # Load data
    #----------------------------------------
    bs = border_size(batchDim)
    print "[emCNN]: loading deploy data..."
    Xdeploy = _load_data(args.emDeployFile,
                         None,
                         tileRadius=bs,
                         onlySlices=args.deploySlices)
    print "[emCNN]: tile radius is: %d" % bs

    # Create a mask volume (vs list of labels to omit) due to API of emlib
    if args.evalPct < 1: 
        Mask = np.zeros(Xdeploy.shape, dtype=np.bool)
        m = Xdeploy.shape[-2]
        n = Xdeploy.shape[-1]
        nToEval = np.round(args.evalPct*m*n).astype(np.int32)
        idx = sobol(2, nToEval ,0)
        idx[0] = np.floor(m*idx[0])
        idx[1] = np.floor(n*idx[1])
        idx = idx.astype(np.int32)
        Mask[:,idx[0], idx[1]] = True
        pct = 100.*np.sum(Mask) / Mask.size
        print("[emCNN]: subsampling volume...%0.2f%% remains" % pct)
    else:
        Mask = np.ones(Xdeploy.shape, dtype=np.bool)

    #----------------------------------------
    # Do deployment & save results
    #----------------------------------------
    sys.stdout.flush()

    if args.nMC < 0: 
        Prob = predict(net, Xdeploy, Mask, batchDim)
    else:
        Prob = predict(net, Xdeploy, Mask, batchDim, nMC=args.nMC)

    # discard mirrored edges 
    Prob = prune_border_4d(Prob, bs)

    net.save(str(os.path.join(outDir, 'final.caffemodel')))
    np.save(os.path.join(outDir, 'YhatDeploy'), Prob)
    scipy.io.savemat(os.path.join(outDir, 'YhatDeploy.mat'), {'Yhat' : Prob})

    print('[emCNN]: deployment complete.')
示例#5
0
def _train_network(args):
    """ Main CNN training loop.

    Creates PyCaffe objects and calls train_one_epoch until done.
    """
    #----------------------------------------
    # parse information from the prototxt files
    #----------------------------------------
    solverParam = caffe_pb2.SolverParameter()
    text_format.Merge(open(args.solver).read(), solverParam)

    netFn = solverParam.net
    netParam = caffe_pb2.NetParameter()
    text_format.Merge(open(netFn).read(), netParam)

    batchDim = emlib.infer_data_dimensions(netFn)
    assert(batchDim[2] == batchDim[3])  # tiles must be square
    print('[emCNN]: batch shape: %s' % str(batchDim))
   
    if args.outDir:
        outDir = args.outDir # overrides snapshot prefix
    else: 
        outDir = str(solverParam.snapshot_prefix)   # unicode -> str
    if not os.path.isdir(outDir):
        os.mkdir(outDir)

    # choose a synthetic data generating function
    if args.rotateData:
        syn_func = lambda V: _xform_minibatch(V, arbitraryRotation=True)
        print('[emCNN]:   WARNING: applying arbitrary rotations to data.  This may degrade performance in some cases...\n')
    else:
        syn_func = lambda V: _xform_minibatch(V, arbitraryRotation=False)


    #----------------------------------------
    # Create the Caffe solver
    # Note this assumes a relatively recent PyCaffe
    #----------------------------------------
    solver = caffe.SGDSolver(args.solver)
    solverMD = SGDSolverMemoryData(solver, solverParam)
    solverMD.print_network()

    #----------------------------------------
    # Load data
    #----------------------------------------
    bs = border_size(batchDim)
    print "[emCNN]: tile radius is: %d" % bs
    
    print "[emCNN]: loading training data..."
    Xtrain, Ytrain = _load_data(args.emTrainFile,
            args.labelsTrainFile,
            tileRadius=bs,
            onlySlices=args.trainSlices,
            omitLabels=args.omitLabels)
    
    print "[emCNN]: loading validation data..."
    Xvalid, Yvalid = _load_data(args.emValidFile,
            args.labelsValidFile,
            tileRadius=bs,
            onlySlices=args.validSlices,
            omitLabels=args.omitLabels)

    #----------------------------------------
    # Do training; save results
    #----------------------------------------
    omitLabels = set(args.omitLabels).union([-1,])   # always omit -1
    currEpoch = 1
    sys.stdout.flush()

    while not solverMD.is_training_complete():
        print "[emCNN]: Starting epoch %d" % currEpoch

        train_one_epoch(solverMD, Xtrain, Ytrain, 
            batchDim, outDir, 
            omitLabels=omitLabels,
            data_augment=syn_func)

        currEpoch += 1

        print "[emCNN]: Making predictions on validation data..."
        Mask = np.ones(Xvalid.shape, dtype=np.bool)
        Mask[Yvalid<0] = False
        Prob = predict(solver.net, Xvalid, Mask, batchDim)

        # discard mirrored edges and form class estimates
        Yhat = np.argmax(Prob, 0) 
        Yhat[Mask==False] = -1;
        Prob = prune_border_4d(Prob, bs)
        Yhat = prune_border_3d(Yhat, bs)

        # compute some metrics
        print('[emCNN]: Validation set performance:')
        emlib.metrics(prune_border_3d(Yvalid, bs), Yhat, display=True)

 
    solver.net.save(str(os.path.join(outDir, 'final.caffemodel')))
    np.save(os.path.join(outDir, 'Yhat.npz'), Prob)
    scipy.io.savemat(os.path.join(outDir, 'Yhat.mat'), {'Yhat' : Prob})
    print('[emCNN]: training complete.')
示例#6
0
文件: emcnn.py 项目: iscoe/coca
def _deploy_network(args):
    #----------------------------------------
    # parse information from the prototxt files
    #----------------------------------------
    netFn = str(args.network)  # unicode->str to avoid caffe API problems
    netParam = caffe_pb2.NetParameter()
    text_format.Merge(open(netFn).read(), netParam)

    batchDim = emlib.infer_data_dimensions(netFn)
    assert(batchDim[2] == batchDim[3])  # tiles must be square
    print('[emCNN]: batch shape: %s' % str(batchDim))

    outDir = os.path.dirname(args.network)
    if not os.path.isdir(outDir):
        os.mkdir(outDir)

    #----------------------------------------
    # Create the Caffe network
    # Note this assumes a relatively recent PyCaffe
    #----------------------------------------
    phaseTest = 1  # 1 := test mode
    net = caffe.Net(netFn, args.model, phaseTest)
    _print_net(net)

    #----------------------------------------
    # Load data
    #----------------------------------------
    bs = border_size(batchDim)
    print "[emCNN]: loading deploy data..."
    Xdeploy, Ydeploy = _load_data(args.emDeployFile,
            args.labelsDeployFile, 
            args, bs)
    print "[emCNN]: tile dimension is: %d" % bs

    #----------------------------------------
    # Do deployment & save results
    #----------------------------------------
    sys.stdout.flush()

    Mask = np.ones(Xdeploy.shape, dtype=np.bool)
    if Ydeploy is not None:
        Mask[Ydeploy<0] = False
    Prob = predict(net, Xdeploy, Mask, batchDim)

    # discard mirrored edges and form class estimates
    Yhat = np.argmax(Prob, 0) 
    Yhat[Mask==False] = -1;
    Prob = prune_border_4d(Prob, bs)
    Yhat = prune_border_3d(Yhat, bs)

    # compute some metrics
    if Ydeploy is not None:
        acc,precision,recall = _binary_metrics(prune_border_3d(Ydeploy, bs), Yhat)

        print('[emCNN]: Task performance:')
        print('         acc=%0.2f, precision=%0.2f, recall=%0.2f' % (acc, precision, recall))

    net.save(str(os.path.join(outDir, 'final.caffemodel')))
    np.save(os.path.join(outDir, 'YhatDeploy.npz'), Prob)
    scipy.io.savemat(os.path.join(outDir, 'YhatDeploy.mat'), {'Yhat' : Prob})
    print('[emCNN]: deployment complete.')
示例#7
0
文件: emcnn.py 项目: iscoe/coca
def _train_network(args):
    #----------------------------------------
    # parse information from the prototxt files
    #----------------------------------------
    solverParam = caffe_pb2.SolverParameter()
    text_format.Merge(open(args.solver).read(), solverParam)

    netFn = solverParam.net
    netParam = caffe_pb2.NetParameter()
    text_format.Merge(open(netFn).read(), netParam)

    batchDim = emlib.infer_data_dimensions(netFn)
    assert(batchDim[2] == batchDim[3])  # tiles must be square
    print('[emCNN]: batch shape: %s' % str(batchDim))
    
    outDir = str(solverParam.snapshot_prefix)   # unicode -> str
    if not os.path.isdir(outDir):
        os.mkdir(outDir)

    # choose a synthetic data generating function
    if args.rotateData:
        syn_func = lambda V: _xform_minibatch(V, True)
        print('[emCNN]:   WARNING: applying arbitrary rotations to data.  This may degrade performance in some cases...\n')
    else:
        syn_func = lambda V: _xform_minibatch(V, False)

    #----------------------------------------
    # Create the Caffe solver
    # Note this assumes a relatively recent PyCaffe
    #----------------------------------------
    solver = caffe.SGDSolver(args.solver)
    _print_net(solver.net)

    #----------------------------------------
    # Load data
    #----------------------------------------
    bs = border_size(batchDim)
    print "[emCNN]: loading training data..."
    Xtrain, Ytrain = _load_data(args.emTrainFile,
            args.labelsTrainFile, 
            args, bs)
    print "[emCNN]: loading validation data..."
    Xvalid, Yvalid = _load_data(args.emValidFile,
            args.labelsValidFile, 
            args, bs)
    print "[emCNN]: tile dimension is: %d" % bs

    #----------------------------------------
    # Do training; save results
    #----------------------------------------
    trainInfo = TrainInfo(solverParam)
    sys.stdout.flush()

    while trainInfo.iter < solverParam.max_iter: 
        print "[emCNN]: Starting epoch %d" % trainInfo.epoch
        train_one_epoch(solver, Xtrain, Ytrain, 
            trainInfo, batchDim, outDir, 
            omitLabels=args.omitLabels,
            data_augment=syn_func)

        print "[emCNN]: Making predictions on validation data..."
        Mask = np.ones(Xvalid.shape, dtype=np.bool)
        Mask[Yvalid<0] = False
        Prob = predict(solver.net, Xvalid, Mask, batchDim)

        # discard mirrored edges and form class estimates
        Yhat = np.argmax(Prob, 0) 
        Yhat[Mask==False] = -1;
        Prob = prune_border_4d(Prob, bs)
        Yhat = prune_border_3d(Yhat, bs)

        # compute some metrics
        acc,precision,recall = _binary_metrics(prune_border_3d(Yvalid, bs), Yhat)

        print('[emCNN]:  Validation set performance:')
        print('         acc=%0.2f, precision=%0.2f, recall=%0.2f' % (acc, precision, recall))

        trainInfo.epoch += 1
 
    solver.net.save(str(os.path.join(outDir, 'final.caffemodel')))
    np.save(os.path.join(outDir, 'Yhat.npz'), Prob)
    scipy.io.savemat(os.path.join(outDir, 'Yhat.mat'), {'Yhat' : Prob})
    print('[emCNN]: training complete.')