示例#1
0
 def make_model(self):
     """Make an EmmaaModel and upload it along with the config to S3."""
     config = self.make_config()
     em = EmmaaModel(self.name, config)
     em.stmts = self.stmts
     ndex_uuid = em.upload_to_ndex()
     config['ndex'] = {'network': ndex_uuid}
     save_config_to_s3(self.name, config)
     em.save_to_s3()
示例#2
0
def create_upload_model(model_name, full_name, indra_stmts, ndex_id=None):
    """Make and upload an EMMAA model from a list of INDRA Statements.

    Parameters
    ----------
    short_name : str
        Short name of the model to use on S3.
    full_name : str
        Human-readable model name to use in EMMAA dashboard.
    indra_stmts : list of indra.statement
        INDRA Statements to be used to populate the EMMAA model.
    ndex_id : str
        UUID of the network corresponding to the model on NDex. If provided,
        the NDex network will be updated with the latest model content.
        If None (default), a new network will be created and the UUID stored
        in the model config files on S3.
    """
    emmaa_stmts = to_emmaa_stmts(indra_stmts, datetime.datetime.now(), [])
    # Get updated CX content for the INDRA Statements
    cxa = CxAssembler(indra_stmts)
    cx_str = cxa.make_model()
    # If we don't have an NDex ID, create network and upload to Ndex
    if ndex_id is None:
        ndex_id = cxa.upload_model(private=False)
        print(f'NDex ID for {model_name} is {ndex_id}.')
    # If the NDEx ID is provided, update the existing network
    else:
        ndex_client.update_network(cx_str, ndex_id)
    # Create the config dictionary
    config_dict = {'ndex': {'network': ndex_id}, 'search_terms': []}
    # Create EMMAA model
    emmaa_model = EmmaaModel(model_name, config_dict)
    emmaa_model.add_statements(emmaa_stmts)
    # Upload model to S3 with config as YAML and JSON
    emmaa_model.save_to_s3()
    s3_client = boto3.client('s3')
    config_json = json.dumps(config_dict)
    s3_client.put_object(Body=config_json.encode('utf8'),
                         Key='models/%s/config.json' % model_name,
                         Bucket='emmaa')
    config_json = json.dumps(config_dict)
    s3_client.put_object(Body=config_json.encode('utf8'),
                         Key='models/%s/config.json' % model_name,
                         Bucket='emmaa')
示例#3
0
def update_cancer(cancer_type):
    """Update the model for the given cancer.

    A JSON config file must be present for the given cancer type, located in
    the models/<cancer_type>/config.json.

    Parameters
    ----------
    cancer_type : str
        A short string which is the name of the cancer, and corresponds to a
        directory in the models directory, as described above.
    """
    print(cancer_type)
    with open(f'models/{cancer_type}/prior_stmts.pkl', 'rb') as fh:
        stmts = pickle.load(fh)
    config = json.load(open(f'models/{cancer_type}/config.json', 'r'))
    em = EmmaaModel(cancer_type, config)
    ess = [EmmaaStatement(st, datetime.datetime.now(), []) for st in stmts]
    em.add_statements(ess)
    em.save_to_s3()
    return
示例#4
0
def create_upload_model(model_name, indra_stmts, config_file):
    """Make and upload an EMMAA model from a list of INDRA Statements.

    Parameters
    ----------
    model_name : str
        Name of the model to use on S3.
    indra_stmts : list of indra.statement
        INDRA Statements to be used to populate the EMMAA model.
    config_file : str
        Path to the local config.json file.
    """
    emmaa_stmts = to_emmaa_stmts(indra_stmts, datetime.datetime.now(), [],
                                 {'internal': True})
    # Load config information
    with open(config_file, 'rt') as f:
        config_json = json.load(f)
    # If there is no ndex entry in the config, create a new network and update
    # the config file with the NDex network ID
    if 'ndex' not in config_json:
        cxa = CxAssembler(indra_stmts)
        cx_str = cxa.make_model()
        ndex_id = cxa.upload_model(private=False)
        print(f'NDex ID for {model_name} is {ndex_id}.')
        config_json['ndex'] = {'network': ndex_id}
        updated_config_file = f'{config_file}.updated'
        with open(updated_config_file, 'wt') as f:
            json.dump(config_json, f, indent=2)
    # If the NDEx ID is provided we don't need to update the existing network
    # because this will occur as part of the model assembly/update procedure
    # on EMMAA itself.
    # Create the config dictionary
    # Create EMMAA model
    emmaa_model = EmmaaModel(model_name, config_json)
    emmaa_model.add_statements(emmaa_stmts)
    # Upload model to S3
    emmaa_model.save_to_s3()
    # Upload config JSON
    s3_client = boto3.client('s3')
    save_config_to_s3(model_name, config_json)
示例#5
0
    def make_model(self, estmts, upload_to_s3=False):
        """Return, and optionally upload to S3 an initial EMMAA Model.

        Parameters
        ----------
        estmts : list of emmaa.statement.EmmaaStatement
            A list of prior EMMAA Statements to initialize the model with.
        upload_to_s3 : Optional[bool]
            If True, the model and the config are uploaded to S3, otherwise
            the model object is just returned without upload. Default: False

        Returns
        -------
        emmaa.model.EmmaaModel
            The EMMAA Model object constructed from the generated config
            and the given EMMAA Statements.
        """
        from emmaa.model import EmmaaModel
        config = self.make_config(upload_to_s3=upload_to_s3)
        model = EmmaaModel(name=self.name, config=config)
        model.add_statements(estmts)
        if upload_to_s3:
            model.save_to_s3()
        return model