def __init__(self, lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=1e-8, save=False, rng=None, *args, **kwargs): print('args=%s' % str(args)) print('kwargs=%s' % str(kwargs)) super(Adam, self).__init__(**kwargs) self.__dict__.update(locals()) print(locals()) # if 'iterations' in kwargs: # print('iterations=%s' % str(kwargs['iterations'])) # self.iterations = shared_scalar(kwargs['iterations'], name='iteration') # else: # print('iterations not set') # self.iterations = shared_scalar(0, name='iteration') self.iterations = shared_scalar(0, name='iteration') self.lr = shared_scalar(lr, name='lr') # self.rng = MRG_RandomStreams(use_cuda=True) self.noise = [] self.forget = dict() # self.rng = rng self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.add(self.iterations) self.add(self.lr)
def __init__(self, lr=0.05, momentum=0.9, decay=0.01, nesterov=True, *args, **kwargs): super(SGD, self).__init__(**kwargs) self.__dict__.update(locals()) self.iterations = shared_scalar(0) self.lr = shared_scalar(lr) self.momentum = shared_scalar(momentum)
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8, save=False, rng=None, *args, **kwargs): super(Adam, self).__init__(**kwargs) self.__dict__.update(locals()) print(locals()) self.iterations = shared_scalar(0, name='iteration') self.lr = shared_scalar(lr, name='lr') self.rng = MRG_RandomStreams(use_cuda=True) self.noise = [] self.forget = dict() self.rng = rng self.add(self.iterations) self.add(self.lr)
def __init__(self, lr=0.1, rho=0.95, epsilon=1e-6, *args, **kwargs): super(Adadelta, self).__init__(**kwargs) self.__dict__.update(locals()) self.lr = shared_scalar(lr) self.iterations = shared_scalar(0)
def __init__(self, lr=0.01, epsilon=1e-6, *args, **kwargs): super(Adagrad, self).__init__(**kwargs) self.__dict__.update(locals()) self.lr = shared_scalar(lr)
def __init__(self, lr=0.001, rho=0.9, epsilon=1e-6, *args, **kwargs): super(RMSprop, self).__init__(**kwargs) self.__dict__.update(locals()) self.lr = shared_scalar(lr) self.rho = shared_scalar(rho) self.iterations = shared_scalar(0)