def upload(): try: image = request.files['image'].read() eg_processor.process_image(image) return send_file('/ekholabs/face-classifier/result/predicted_image.png', mimetype='image/png') except Exception as err: logging.error('An error has occurred whilst processing the file: "{0}"'.format(err)) abort(400)
def upload(): try: image = request.files['image'].read() eg_processor.process_image(image) return send_file( str(pathlib.Path(__file__).parent.parent.parent.absolute()) + '/result/predicted_image.png', mimetype='image/png') except Exception as err: logging.error('No pudimos procesar la imagen enviada ' + str(err)) abort(400)
def upload(): try: image = request.files.get('image') if not image: return make_response('Please provide \'image\' for detect.\n', 400) filename = str(uuid.uuid4()) + '-' + image.filename eg_processor.process_image(image.read(), filename, app.config.get('model_path')) return make_response(jsonify(convert_data(filename)), 200) except Exception as err: logging.error( 'An error has occurred whilst processing the file: "{0}"'.format( err)) abort(400)
def upload(): try: image = request.files['image'].read() emotions = eg_processor.process_image(image) return jsonify(emotions) except Exception as err: logging.error('An error has occurred whilst processing the file: "{0}"'.format(err)) abort(400)
def upload(): try: image = request.files['image'].read() emotion = eg_processor.process_image(image) return jsonify(emotion) except Exception as err: logging.error( 'An error has occurred whilst processing the file: "{0}"'.format( err)) abort(400)
def classifyImage(): # image = request.files['image'].read() # print(image[:10], "this is image") dataUrl = request.form["dataUrl"] print("this is data url", dataUrl[:100]) content = dataUrl.split(';')[1] img_encoded = content.split(',')[1] body = base64.decodebytes(img_encoded.encode("utf-8")) # jsonInfo = full_filepath = eg_processor.process_image(body) return render_template(CLASSIFY_IMAGE_TEMPLATE, result_img=full_filepath)
def upload(): try: image = request.files['image'].read() emotion_text = eg_processor.process_image(image) except Exception as e: logging.error(traceback.format_exc()) return make_response( jsonify({ 'error': 'An error has occurred whilst processing the file: "{0}"'. format(e) }), 500) #logging.error('An error has occurred whilst processing the file: "{0}"'.format(e)) #abort(400) else: return make_response(jsonify({'emotion': emotion_text}), 200)
def upload(ret_type): try: # with open('/tmp/debug.txt', "w+") as debug_file: # print("bp A".format(), file=debug_file) image = request.files['image'].read() result_path = '/tmp/result.png' ret_array = eg_processor.process_image(image, result_path) if ret_type == 'label': return jsonify(ret_array) elif ret_type == 'mark': return send_file(result_path, mimetype='image/png') else: return 'unknown ret_type ' + ret_type except Exception as err: logging.error( 'An error has occurred whilst processing the file: "{0}"'.format( err)) abort(400)
def upload(): try: image = '' if 'application/json' in request.content_type: image = base64.b64decode(request.get_json()['image']) elif 'multipart/form-data' in request.content_type: image = request.files['image'].read() else: image = base64.b64decode(request.get_data()) faces = eg_processor.process_image(image) response = make_response(jsonify(faces), 200) response.headers['Content-Type'] = 'application/json' return response except Exception as err: logging.error( 'An error has occurred whilst processing the file: "{0}"'.format( err)) abort(400)
def upload(): """ 上传图片,并返回识别结果 :return: """ res = dict() res['data'] = 1 filename = photos.save(request.files['photo']) # 获取原始图片 unchanged_image = cv2.imread(UPLOAD_DIR + "/" + filename) # 获取情绪,性别信息 face_size, gender, emotion = eg_processor.process_image( unchanged_image) results = [] # 面部特征结果 face_detail = list() face_detail_dict = apply(unchanged_image) print(face_detail_dict.keys()) for k in face_detail_dict.keys(): face_detail.append( Node(contents=[ face_detail_dict[k]['type'] + "\n" + face_detail_dict[k]['detail'] ], dtype="text", style="padding-top:10px").to_dict()) result = Result(title="面部特征", detail=Node(contents=face_detail).to_dict()).to_dict() results.append(result) # 健康特征结果 health_detail = list() health_detail.append( Node(style="padding-top:10px", dtype="text", contents=["1. 保健原则:益气固表,健脾和胃"]).to_dict()) health_detail.append( Node(style="padding-top:10px", dtype="text", contents=["2. 起居养生:早睡早起,保证睡眠充足,四季起居有常;适度运动,避免过度体力劳动." ]).to_dict()) health_detail.append( Node(style="padding-top:10px", dtype="text", contents=[ "3. 饮食药膳:现在是小满,我国古代将小满分为三候:\n“一候苦菜秀;二候靡草死;\ 三候麦秋至。”《周书》中,即有“小满之日苦菜秀”之说。小满时节的气候较为潮湿,所以适宜食用一些祛湿类的食物,如番茄,西瓜。" ]).to_dict()) health_detail.append( Node(dtype="image", contents=["/images/baidu/fanqie.jpeg"]).to_dict()) health_detail.append( Node(dtype="text", contents=[ "这是最好的防晒食物。番茄富含抗氧化剂番茄红素,每天摄入16毫克番茄红素可将晒伤的危险系数下降40%。" ]).to_dict()) health_detail.append( Node(dtype="image", contents=["/images/baidu/xigua.jpg"]).to_dict()) health_detail.append( Node(dtype="text", contents=["西瓜含水量在水果中是首屈一指的,所以特别适合补充人体水分的损失。"]).to_dict()) health_result = Result( title="健康状况:气虚,肾虚", more="详细诊断 >", detail=Node(contents=health_detail).to_dict()).to_dict() results.append(health_result) res['face_size'] = face_size res['results'] = results res['image_url'] = photos.url(filename) story_json = json.dumps(res) openid = request.args.get("openid") print(openid) if openid is not None: # 保存记录到数据库 print("保存用户记录到数据库" + openid) print(UserInfo.query.all()) user_info = UserInfo.query.filter_by(openid=openid).first() print(user_info) if user_info is not None: story = FaceStory(openid, user_info.nick_name, user_info.avatar_url, story_json) db.session.add(story) db.session.flush() db.session.refresh(story) db.session.commit() return Response(json.dumps(story.to_dict()), mimetype='application/json') return Response(story_json, mimetype='application/json')